ST表
概念
例题1、P3865 【模板】ST表
#include <bits/stdc++.h>
using namespace std;
#define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0)
#define all(__vv__) (__vv__).begin(), (__vv__).end()
#define endl "\n"
#define pai pair<int, int>
#define ms(__x__,__val__) memset(__x__, __val__, sizeof(__x__))
typedef long long ll; typedef unsigned long long ull; typedef long double ld;
inline ll read() { ll s = 0, w = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') w = -1; for (; isdigit(ch); ch = getchar()) s = (s << 1) + (s << 3) + (ch ^ 48); return s * w; }
inline void print(ll x, int op = 10) { if (!x) { putchar('0'); if (op) putchar(op); return; } char F[40]; ll tmp = x > 0 ? x : -x; if (x < 0)putchar('-'); int cnt = 0; while (tmp > 0) { F[cnt++] = tmp % 10 + '0'; tmp /= 10; } while (cnt > 0)putchar(F[--cnt]); if (op) putchar(op); }
inline ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; }
ll qpow(ll a, ll b) { ll ans = 1; while (b) { if (b & 1) ans *= a; b >>= 1; a *= a; } return ans; } ll qpow(ll a, ll b, ll mod) { ll ans = 1; while (b) { if (b & 1)(ans *= a) %= mod; b >>= 1; (a *= a) %= mod; }return ans % mod; }
const int dir[][2] = { {0,1},{1,0},{0,-1},{-1,0},{1,1},{1,-1},{-1,1},{-1,-1} };
const int MOD = 1e9 + 7;
const int INF = 0x3f3f3f3f;
const int N = 1e5 + 7;
int st[N][21], Log2[N];
void pre() {
Log2[1] = 0;
Log2[2] = 1;
for (int i = 3; i < N; ++i) Log2[i] = Log2[i >> 1] + 1;
}
int main() {
pre();
int T = 1;
//T = read();
while (T--) {
int n = read(), m = read();
for (int i = 1; i <= n; ++i) st[i][0] = read();
int t = Log2[n]; //区间最长的2次方
for (int j = 1; j <= t; ++j)
for (int i = 1; i + (1 << j) - 1 <= n; ++i)
st[i][j] = max(st[i][j - 1], st[i + (1 << (j - 1))][j - 1]);
while (m--) {
int l = read(), r = read();
int s = Log2[r - l + 1];
print(max(st[l][s], st[r - (1 << s) + 1][s]));
}
}
return 0;
}
例题2、P1890 gcd区间
#include <bits/stdc++.h>
using namespace std;
#define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0)
#define all(__vv__) (__vv__).begin(), (__vv__).end()
#define endl "\n"
#define pai pair<int, int>
#define ms(__x__,__val__) memset(__x__, __val__, sizeof(__x__))
typedef long long ll; typedef unsigned long long ull; typedef long double ld;
inline ll read() { ll s = 0, w = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') w = -1; for (; isdigit(ch); ch = getchar()) s = (s << 1) + (s << 3) + (ch ^ 48); return s * w; }
inline void print(ll x, int op = 10) { if (!x) { putchar('0'); if (op) putchar(op); return; } char F[40]; ll tmp = x > 0 ? x : -x; if (x < 0)putchar('-'); int cnt = 0; while (tmp > 0) { F[cnt++] = tmp % 10 + '0'; tmp /= 10; } while (cnt > 0)putchar(F[--cnt]); if (op) putchar(op); }
inline ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; }
ll qpow(ll a, ll b) { ll ans = 1; while (b) { if (b & 1) ans *= a; b >>= 1; a *= a; } return ans; } ll qpow(ll a, ll b, ll mod) { ll ans = 1; while (b) { if (b & 1)(ans *= a) %= mod; b >>= 1; (a *= a) %= mod; }return ans % mod; }
const int dir[][2] = { {0,1},{1,0},{0,-1},{-1,0},{1,1},{1,-1},{-1,1},{-1,-1} };
const int MOD = 1e9 + 7;
const int INF = 0x3f3f3f3f;
const int N = 1e3 + 7;
int st[N][21], Log2[N];
void pre() {
Log2[1] = 0;
Log2[2] = 1;
for (int i = 3; i < N; ++i) Log2[i] = Log2[i >> 1] + 1;
}
int main() {
pre();
int T = 1;
//T = read();
while (T--) {
int n = read(), m = read();
for (int i = 1; i <= n; ++i) st[i][0] = read();
int t = Log2[n]; //区间最长的2次方
for (int j = 1; j <= t; ++j)
for (int i = 1; i + (1 << j) - 1 <= n; ++i)
st[i][j] = gcd(st[i][j - 1], st[i + (1 << (j - 1))][j - 1]);
while (m--) {
int l = read(), r = read();
int s = Log2[r - l + 1];
print(gcd(st[l][s], st[r - (1 << s) + 1][s]));
}
}
return 0;
}
例题3、P2880 [USACO07JAN]Balanced Lineup G
#include <bits/stdc++.h>
using namespace std;
#define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0)
#define all(__vv__) (__vv__).begin(), (__vv__).end()
#define endl "\n"
#define pai pair<int, int>
#define ms(__x__,__val__) memset(__x__, __val__, sizeof(__x__))
typedef long long ll; typedef unsigned long long ull; typedef long double ld;
inline ll read() { ll s = 0, w = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') w = -1; for (; isdigit(ch); ch = getchar()) s = (s << 1) + (s << 3) + (ch ^ 48); return s * w; }
inline void print(ll x, int op = 10) { if (!x) { putchar('0'); if (op) putchar(op); return; } char F[40]; ll tmp = x > 0 ? x : -x; if (x < 0)putchar('-'); int cnt = 0; while (tmp > 0) { F[cnt++] = tmp % 10 + '0'; tmp /= 10; } while (cnt > 0)putchar(F[--cnt]); if (op) putchar(op); }
inline ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; }
ll qpow(ll a, ll b) { ll ans = 1; while (b) { if (b & 1) ans *= a; b >>= 1; a *= a; } return ans; } ll qpow(ll a, ll b, ll mod) { ll ans = 1; while (b) { if (b & 1)(ans *= a) %= mod; b >>= 1; (a *= a) %= mod; }return ans % mod; }
const int dir[][2] = { {0,1},{1,0},{0,-1},{-1,0},{1,1},{1,-1},{-1,1},{-1,-1} };
const int MOD = 1e9 + 7;
const int INF = 0x3f3f3f3f;
const int N = 5e4 + 7;
int st1[N][21], st2[N][21], Log2[N];
void pre() {
Log2[1] = 0;
Log2[2] = 1;
for (int i = 3; i < N; ++i) Log2[i] = Log2[i >> 1] + 1;
}
int querymax(int l, int r) {
int s = Log2[r - l + 1];
return max(st1[l][s], st1[r - (1 << s) + 1][s]);
}
int querymin(int l, int r) {
int s = Log2[r - l + 1];
return min(st2[l][s], st2[r - (1 << s) + 1][s]);
}
int main() {
//freopen("input.txt", "r", stdin);
//freopen("output.txt", "w", stdout);
pre();
int T = 1;
//T = read();
while (T--) {
int n = read(), m = read();
for (int i = 1; i <= n; ++i) st1[i][0] = st2[i][0] = read();
int t = Log2[n]; //区间最长的2次方
for (int j = 1; j <= t; ++j)
for (int i = 1; i + (1 << j) - 1 <= n; ++i)
st1[i][j] = max(st1[i][j - 1], st1[i + (1 << (j - 1))][j - 1]),
st2[i][j] = min(st2[i][j - 1], st2[i + (1 << (j - 1))][j - 1]);
while (m--) {
int l = read(), r = read();
int ans = querymax(l, r) - querymin(l, r);
print(ans);
}
}
return 0;
} 例题4、[bzoj1067] [SCOI2007]降雨量
#include <bits/stdc++.h>
using namespace std;
#define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0)
#define all(__vv__) (__vv__).begin(), (__vv__).end()
#define endl "\n"
#define pai pair<int, int>
#define ms(__x__,__val__) memset(__x__, __val__, sizeof(__x__))
typedef long long ll; typedef unsigned long long ull; typedef long double ld;
inline ll read() { ll s = 0, w = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') w = -1; for (; isdigit(ch); ch = getchar()) s = (s << 1) + (s << 3) + (ch ^ 48); return s * w; }
inline void print(ll x, int op = 10) { if (!x) { putchar('0'); if (op) putchar(op); return; } char F[40]; ll tmp = x > 0 ? x : -x; if (x < 0)putchar('-'); int cnt = 0; while (tmp > 0) { F[cnt++] = tmp % 10 + '0'; tmp /= 10; } while (cnt > 0)putchar(F[--cnt]); if (op) putchar(op); }
inline ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; }
ll qpow(ll a, ll b) { ll ans = 1; while (b) { if (b & 1) ans *= a; b >>= 1; a *= a; } return ans; } ll qpow(ll a, ll b, ll mod) { ll ans = 1; while (b) { if (b & 1)(ans *= a) %= mod; b >>= 1; (a *= a) %= mod; }return ans % mod; }
const int dir[][2] = { {0,1},{1,0},{0,-1},{-1,0},{1,1},{1,-1},{-1,1},{-1,-1} };
const int MOD = 1e9 + 7;
const int INF = 0x3f3f3f3f;
const int N = 5e4 + 7;
int year[N];
int st[N][21], Log2[N];
void pre() {
Log2[1] = 0;
Log2[2] = 1;
for (int i = 3; i < N; ++i) Log2[i] = Log2[i >> 1] + 1;
}
int query(int l, int r) {
if (l > r) return -INF;
int s = Log2[r - l + 1];
return max(st[l][s], st[r - (1 << s) + 1][s]);
}
int main() {
//freopen("input.txt", "r", stdin);
//freopen("output.txt", "w", stdout);
pre();
int T = 1;
//T = read();
while (T--) {
int n = read();
for (int i = 1; i <= n; ++i) year[i] = read(), st[i][0] = read();
int t = Log2[n]; //区间最长的2次方
for (int j = 1; j <= t; ++j)
for (int i = 1; i + (1 << j) - 1 <= n; ++i)
st[i][j] = max(st[i][j - 1], st[i + (1 << (j - 1))][j - 1]);
int m = read();
while (m--) {
int a = read(), b = read();
int l = lower_bound(year + 1, year + 1 + n, a) - year;
int r = lower_bound(year + 1, year + 1 + n, b) - year;
if (year[l] != a and year[r] != b) puts("maybe");
else if (year[l] == a and year[r] != b) {
if (query(l + 1, r - 1) >= st[l][0]) puts("false");
else puts("maybe");
}
else if (year[l] != a and year[r] == b) {
if (query(l, r - 1) >= st[r][0]) puts("false");
else puts("maybe");
}
else if (st[l][0] >= st[r][0] and query(l + 1, r - 1) < st[r][0]) {
if (r - l == b - a) puts("true");
else puts("maybe");
}
else puts("false");
}
}
return 0;
}
力扣:找出最具竞争力的子序列
给你长度为 的序列,你需要找到一个最小的长度为
的子序列。
处理办法是表预处理各个区间的最小值。
很显然,对于长度为的,我们要找到长度为
的子序列,那么我们最低的要求就是在
这个区间里面找到最小值,这样才有在最差的情况可以把后面全部的选上满足条件。并且满足了当前这个数是在这个区间中的最小数。每次都拿最小,我们就可以构成一个最小的子序列了。
注意枚举的起点和终点就可以了,查询区间最小值的过程使用表处理。
const int N = 1e5+7;
int st[N][21], Log2[N];
void pre() {
Log2[1] = 0;
Log2[2] = 1;
for (int i = 3; i < N; ++i) Log2[i] = Log2[i >> 1] + 1;
}
int query(int l, int r) {
int s = Log2[r - l + 1];
return min(st[l][s], st[r - (1 << s) + 1][s]);
}
vector<int> ans;
int cnt[N];
class Solution {
public:
int n;
void dfs(vector<int>& nums, int start, int k) {
if (k == 0) return;
int mini = query(start, n - k + 1);
ans.push_back(mini);
for (; nums[start - 1] != mini; ++start);
dfs(nums, start + 1, k - 1);
}
vector<int> mostCompetitive(vector<int>& nums, int k) {
pre();
memset(cnt, 0, sizeof cnt);
n = nums.size();
for (int i = 0; i < n; ++i)
st[i + 1][0] = nums[i];
int t = Log2[n];
for (int j = 1; j <= t; ++j)
for (int i = 1; i + (1 << j) - 1 <= n; ++i)
st[i][j] = min(st[i][j - 1], st[i + (1 << (j - 1))][j - 1]);
ans.clear();
dfs(nums, 1, k);
return ans;
}
}; 算法专项 文章被收录于专栏
整合算法
