初学者|一起学学SpaCy
点击上方蓝色字体,关注AI小白入门哟
跟着博主的脚步,每天进步一点点
本文简绍了SpaCy的使用方法,据其官网所言,spaCy是世界上最快的工业级自然语言处理工具。
简介
spaCy是世界上最快的工业级自然语言处理工具。 支持多种自然语言处理基本功能。
spaCy主要功能包括分词、词性标注、词干化、命名实体识别、名词短语提取等等。
官网地址:https://spacy.io/
实战
1.安装
# 安装:pip install spaCy# 国内源安装:pip install spaCy -i https://pypi.tuna.tsinghua.edu.cn/simpleimport spacynlp = spacy.load('en')doc = nlp(u'This is a sentence.')
# 国内源安装:pip install spaCy -i https://pypi.tuna.tsinghua.edu.cn/simple
import spacy
nlp = spacy.load('en')
doc = nlp(u'This is a sentence.')
2.tokenize功能
for token in doc: print(token)Thisisasentence.in doc:
print(token)
This
is
a
sentence
.
3.词干化(Lemmatize)
for token in doc: print(token, token.lemma_, token.lemma)This this 1995909169258310477is be 10382539506755952630a a 11901859001352538922sentence sentence 18108853898452662235. . 12646065887601541794in doc:
print(token, token.lemma_, token.lemma)
This this 1995909169258310477
is be 10382539506755952630
a a 11901859001352538922
sentence sentence 18108853898452662235
. . 12646065887601541794
4.词性标注(POS Tagging)
for token in doc: print(token, token.pos_, token.pos)This DET 89is VERB 99a DET 89sentence NOUN 91. PUNCT 96in doc:
print(token, token.pos_, token.pos)
This DET 89
is VERB 99
a DET 89
sentence NOUN 91
. PUNCT 96
5.命名实体识别(NER)
for entity in doc.ents: print(entity, entity.label_, entity.label)in doc.ents:
print(entity, entity.label_, entity.label)
6.名词短语提取
for nounc in doc.noun_chunks: print(nounc)a sentencein doc.noun_chunks:
print(nounc)
a sentence
代码已上传:https://github.com/yuquanle/StudyForNLP/blob/master/NLPtools/SpacyDemo.ipynb
The End
▼往期精彩回顾▼ 新年送福气|您有一份NLP大礼包待领取
自然语言处理中注意力机制综述
达观杯文本智能处理挑战赛冠军解决方案
长按二维码关注
AI小白入门
ID:StudyForAI
学习AI学习ai(爱)
期待与您的相遇~