意料之外的offer~美团我哭死😭
这是我第1⃣️个没有hr面直接给offer的公司
整个面试流程也很顺畅,面试官都很友好,很喜欢和他们一起讨论问题
虽然因为已经接了别的offer了,可能成为不了团孝子了,但我还是真的团吹!
以后外卖只点美团外卖!
虽然暑期去不了了,希望团秋招再能给我机会呜呜呜~😍😍
已经拒绝offer啦,给兄弟们释放hc了已经,大伙快冲~😋😋
==============>
这里简单分享一下我的timeline和面经叭,希望对大家有帮助~
3.2 投递

3.20 一面
1. 拷打RAG项目
2. 拷打简历论文
3. deepspeed的显存占用
4. vllm的优点
5. flash attention
6. 算法:股票买卖

3.24 二面
1. RAG向量化模型有哪些
2. 怎么提升RAG覆盖度
3. 推理显存占用
3. RAG表格解析
4. 怎么评估开放式问答指标

3.27 oc😘😘😘

#互联网大厂实习# 互联网大厂 #人生第一个offer# 校招 #美团# 大厂 #轮到我晒offer了 
全部评论
接好运
点赞 回复 分享
发布于 04-07 17:13 广东
接好运
点赞 回复 分享
发布于 03-31 15:16 广东
算法岗么,佬
点赞 回复 分享
发布于 03-31 11:50 湖北
接好运
点赞 回复 分享
发布于 03-28 19:30 上海
接好运
点赞 回复 分享
发布于 03-28 14:28 四川
接好运
点赞 回复 分享
发布于 03-28 12:49 湖南
点赞 回复 分享
发布于 03-27 20:47 江苏

相关推荐

RAG 是啥?RAG,全称 Retrieval-Augmented Generation,意思是 “ 检索增强生成 ” 。以前的 AI 模型知识有限,还可能答错或者答得不靠谱,而且企业用起来也不安全。RAG 就是来解决这些问题的!它能让 AI 在回答前先去 “ 图书馆 ” (知识库)搜资料,再给出答案。RAG 怎么干活?RAG 的工作流程简单来说就是三步走:你问我答:用户问问题,比如 “ 今天吃什么好?”,RAG 系统接收到了。翻书找答案:RAG 的 “ 小助手 ” 会飞快地在知识库里找相关资料,比如美食推荐、营养搭配之类的。整合输出:把找到的资料和问题混合在一起,扔进大模型里加工,生成一个超棒的答案,比如 “ 今天你可以试试清蒸鲈鱼,肉嫩味美,还很营养哦!”。RAG 的核心组件RAG 主要有两个核心组件:检索器(Retriever):就像在图书馆里负责找书的管理员,能在知识库里快速定位到相关资料。生成器(Generator):拿到资料后,它就像个作家,把资料和问题结合,生成最终的回答。RAG 跟其他技术比有啥厉害之处?对比直接用大模型 API 或者微调,RAG 有这些牛 X 的地方:知识更新快:知识库能实时更新,AI 就能立马掌握新知识,不用重新训练,省时省力。省钱省心:不用大规模重新训练模型,成本大大降低。不会忘事儿:不会像微调那样,在没训练过的任务上表现不好,稳稳地保留了模型的通用能力。不过呢,RAG 也有点小缺点,比如在特别需要深度理解和风格模仿的问题上,可能就没微调那么厉害。RAG 的关键环节和挑战文档切分(Chunking):把文档切成合适的大小,就像切蛋糕一样,得找到那个完美的大小,不然可能影响检索效率。Embedding 模型选择:选对模型就像给汽车选发动机,直接决定向量表示的质量,影响后续的检索和生成效果。检索效果评估:得时刻监控检索的召回率和精确率,就像给检索系统做定期体检,有问题及时调整。向量数据库的作用:它是高效存储和检索向量表示的中流砥柱,就像给知识库装上了超级导航,能快速定位到相关信息。整体效果评估:要时不时对 RAG 系统来个全方位体检,从生成答案的准确性、相关性等方面打分,确保系统一直在线。
点赞 评论 收藏
分享
评论
5
12
分享

创作者周榜

更多
牛客网
牛客企业服务