External Sorting
External sorting is a term for a class of sorting algorithms that can handle massive amounts of data. External sorting is required when the data being sorted do not fit into the main memory of a computing device (usually RAM) and instead they must reside in the slower external memory (usually a hard drive). External sorting typically uses a hybrid sort-merge strategy. In the sorting phase, chunks of data small enough to fit in main memory are read, sorted, and written out to a temporary file. In the merge phase, the sorted sub-files are combined into a single larger file.
One example of external sorting is the external merge sort algorithm, which sorts chunks that each fit in RAM, then merges the sorted chunks together. We first divide the file into runs such that the size of a run is small enough to fit into main memory. Then sort each run in main memory using merge sort sorting algorithm. Finally merge the resulting runs together into successively bigger runs, until the file is sorted.
Prerequisite for the algorithm/code:
MergeSort : Used for sort individual runs (a run is part of file that is small enough to fit in main memory)
Merge K Sorted Arrays : Used to merge sorted runs.
Below are the steps used in C++ implementation.
Inputs:
input_file : Name of input file. input.txt
output_file : Name of output file, output.txt
run_size : Size of a run (can fit in RAM)
num_ways : Number of runs to be merged
Output:
1) Read input_file such that at most 'run_size' elements
are read at a time. Do following for the every run read
in an array.
a) Sort the run using MergeSort.
b) Store the sorted run in a temporary file, say 'i'
for i'th run.
// C++ program to implement external sorting using // merge sort #include <bits/stdc++.h> using namespace std; struct MinHeapNode { // The element to be stored int element; // index of the array from which the element is taken int i; }; // Prototype of a utility function to swap two min heap nodes void swap(MinHeapNode* x, MinHeapNode* y); // A class for Min Heap class MinHeap { MinHeapNode* harr; // pointer to array of elements in heap int heap_size; // size of min heap public: // Constructor: creates a min heap of given size MinHeap(MinHeapNode a[], int size); // to heapify a subtree with root at given index void MinHeapify(int); // to get index of left child of node at index i int left(int i) { return (2 * i + 1); } // to get index of right child of node at index i int right(int i) { return (2 * i + 2); } // to get the root MinHeapNode getMin() { return harr[0]; } // to replace root with new node x and heapify() // new root void replaceMin(MinHeapNode x) { harr[0] = x; MinHeapify(0); } }; // Constructor: Builds a heap from a given array a[] // of given size MinHeap::MinHeap(MinHeapNode a[], int size) { heap_size = size; harr = a; // store address of array int i = (heap_size - 1) / 2; while (i >= 0) { MinHeapify(i); i--; } } // A recursive method to heapify a subtree with root // at given index. This method assumes that the // subtrees are already heapified void MinHeap::MinHeapify(int i) { int l = left(i); int r = right(i); int smallest = i; if (l < heap_size && harr[l].element < harr[i].element) smallest = l; if (r < heap_size && harr[r].element < harr[smallest].element) smallest = r; if (smallest != i) { swap(&harr[i], &harr[smallest]); MinHeapify(smallest); } } // A utility function to swap two elements void swap(MinHeapNode* x, MinHeapNode* y) { MinHeapNode temp = *x; *x = *y; *y = temp; } // Merges two subarrays of arr[]. // First subarray is arr[l..m] // Second subarray is arr[m+1..r] void merge(int arr[], int l, int m, int r) { int i, j, k; int n1 = m - l + 1; int n2 = r - m; /* create temp arrays */ int L[n1], R[n2]; /* Copy data to temp arrays L[] and R[] */ for(i = 0; i < n1; i++) L[i] = arr[l + i]; for(j = 0; j < n2; j++) R[j] = arr[m + 1 + j]; /* Merge the temp arrays back into arr[l..r]*/ i = 0; // Initial index of first subarray j = 0; // Initial index of second subarray k = l; // Initial index of merged subarray while (i < n1 && j < n2) { if (L[i] <= R[j]) arr[k++] = L[i++]; else arr[k++] = R[j++]; } /* Copy the remaining elements of L[], if there are any */ while (i < n1) arr[k++] = L[i++]; /* Copy the remaining elements of R[], if there are any */ while(j < n2) arr[k++] = R[j++]; } /* l is for left index and r is right index of the sub-array of arr to be sorted */ void mergeSort(int arr[], int l, int r) { if (l < r) { // Same as (l+r)/2, but avoids overflow for // large l and h int m = l + (r - l) / 2; // Sort first and second halves mergeSort(arr, l, m); mergeSort(arr, m + 1, r); merge(arr, l, m, r); } } FILE* openFile(char* fileName, char* mode) { FILE* fp = fopen(fileName, mode); if (fp == NULL) { perror("Error while opening the file.\n"); exit(EXIT_FAILURE); } return fp; } // Merges k sorted files. Names of files are assumed // to be 1, 2, 3, ... k void mergeFiles(char *output_file, int n, int k) { FILE* in[k]; for (int i = 0; i < k; i++) { char fileName[2]; // convert i to string snprintf(fileName, sizeof(fileName), "%d", i); // Open output files in read mode. in[i] = openFile(fileName, "r"); } // FINAL OUTPUT FILE FILE *out = openFile(output_file, "w"); // Create a min heap with k heap nodes. Every heap node // has first element of scratch output file MinHeapNode* harr = new MinHeapNode[k]; int i; for (i = 0; i < k; i++) { // break if no output file is empty and // index i will be no. of input files if (fscanf(in[i], "%d ", &harr[i].element) != 1) break; harr[i].i = i; // Index of scratch output file } MinHeap hp(harr, i); // Create the heap int count = 0; // Now one by one get the minimum element from min // heap and replace it with next element. // run till all filled input files reach EOF while (count != i) { // Get the minimum element and store it in output file MinHeapNode root = hp.getMin(); fprintf(out, "%d ", root.element); // Find the next element that will replace current // root of heap. The next element belongs to same // input file as the current min element. if (fscanf(in[root.i], "%d ", &root.element) != 1 ) { root.element = INT_MAX; count++; } // Replace root with next element of input file hp.replaceMin(root); } // close input and output files for (int i = 0; i < k; i++) fclose(in[i]); fclose(out); } // Using a merge-sort algorithm, create the initial runs // and divide them evenly among the output files void createInitialRuns(char *input_file, int run_size, int num_ways) { // For big input file FILE *in = openFile(input_file, "r"); // output scratch files FILE* out[num_ways]; char fileName[2]; for (int i = 0; i < num_ways; i++) { // convert i to string snprintf(fileName, sizeof(fileName), "%d", i); // Open output files in write mode. out[i] = openFile(fileName, "w"); } // allocate a dynamic array large enough // to accommodate runs of size run_size int* arr = (int*)malloc(run_size * sizeof(int)); bool more_input = true; int next_output_file = 0; int i; while (more_input) { // write run_size elements into arr from input file for (i = 0; i < run_size; i++) { if (fscanf(in, "%d ", &arr[i]) != 1) { more_input = false; break; } } // sort array using merge sort mergeSort(arr, 0, i - 1); // write the records to the appropriate scratch output file // can't assume that the loop runs to run_size // since the last run's length may be less than run_size for (int j = 0; j < i; j++) fprintf(out[next_output_file], "%d ", arr[j]); next_output_file++; } // close input and output files for (int i = 0; i < num_ways; i++) fclose(out[i]); fclose(in); } // For sorting data stored on disk void externalSort(char* input_file, char *output_file, int run_size, int num_ways) { // read the input file, create the initial runs, // and assign the runs to the scratch output files createInitialRuns(input_file, run_size, num_ways); // Merge the runs using the K-way merging mergeFiles(output_file, run_size, num_ways); } // Driver program to test above int main() { // No. of Partitions of input file. int num_ways = 10; // The size of each partition int run_size = 1000; char input_file[] = "input.txt"; char output_file[] = "output.txt"; FILE* in = openFile(input_file, "w"); srand(time(NULL)); // generate input for (int i = 0; i < num_ways * run_size; i++) fprintf(in, "%d ", rand()); fclose(in); externalSort(input_file, output_file, num_ways, run_size); return 0; }