机器学习数学公式符号大全(LaTex版)

公众号:尤而小屋
作者:Peter
编辑:Peter

大家好,我是Peter~

LaTeX是一种标记语言,主要用于创建高质量的学术文档,特别是数学、物理和计算机科学领域的文档。它基于TeX排版系统,由美国数学家Donald E. Knuth开发。在LaTeX中,你可以轻松地编写复杂的数学公式,并控制文档的布局和样式。

本文整理了丰富的数学公式编写过程中涉及到的的各种符号,建议收藏直接使用~

两种方式

在LaTeX中编辑数学公式的两种表现形式:

  • 行内:使用一对$公式部分$即可,比如勾股定理的公式:$a^2 +b^2=c^2$
  • 行外:使用两对$$公式部分$$,勾股定理$$a^2 +b^2=c^2$$单独占据一行

常用希腊字母 Greek alphabet

希腊字母是希腊语所使用的字母,也广泛用于数学、物理、生物、化学、天文等学科。它是世界上最早拥有表示元音音位的字母的书写系统

序号小写LaTeX读音序号大写LaTeX读音
1α\alpha/ˈælfə/22σ\sigma/ˈsɪɡmə/
2β\beta/ˈbiːtə/, US: /ˈbeɪtə/23ς\varsigma/ˈsɪɡmə/
3γ\gamma/ˈɡæmə/24τ\tau/taʊ, tɔː/
4δ\delta/ˈdɛltə/25υ\upsilon/ˈʌpsɪlɒn/
5ϵ\epsilon/ˈɛpsɪlɒn/26ϕ\phi/faɪ/
6ε\varepsilon/ˈɛpsɪlɒn/27φ\varphi/faɪ/
7ζ\zeta/ˈzeɪtə/28χ\chi/kaɪ/
8η\eta/ˈeɪtə/29ψ\psi/psaɪ/
9θ\theta/ˈθiːtə/30ω\omega/oʊˈmeɪɡə/
10ϑ\vartheta/ˈθiːtə/31Γ\Gamma/ˈɡæmə/
11ι\iota/aɪˈoʊtə/32Δ\Delta/ˈdɛltə/
12κ\kappa/ˈkæpə/33Θ\Theta/ˈθiːtə/
13λ\lambda/ˈlæmdə/34Λ\Lambda/ˈlæmdə/
14μ\mu/mjuː/35Ξ\Xi/zaɪ, ksaɪ/
15ν\nu/njuː/36Π\Pi/paɪ/
16ξ\xi/zaɪ, ksaɪ/37Σ\Sigma/ˈsɪɡmə/
17oo/ˈɒmɪkrɒn/38Υ\Upsilon/ˈʌpsɪlɒn/
18π\pi/paɪ/39Φ\Phi/faɪ/
19ϖ\varpi/paɪ/40Ψ\Psi/psaɪ/
20ρ\rho/roʊ/41Ω\Omega/oʊˈmeɪɡə/
21ϱ\varrho/roʊ/

常用希伯来字母Hebrew alphabet

序号图标LaTeX英文
1\alephaleph
2\bethbeth
3\gimelgimel
4\dalethdaleth

在Typora中使用markdown编写LaTex符号的效果:

π、ζ、π、ϱ、ℵ\pi、\zeta、\pi、\varrho、\alephπζπϱ

源码为:

$\pi、\zeta、\pi、\varrho、\aleph$   # 一对$$

二元运算符 Binary operations

常用的二元运算符

序号图标LaTeX序号图标LaTeX
1++20\bullet
2-21\oplus
3×\times22\ominus
4÷\div÷\div (在physics扩展开启状态下为)23\odot
5±\pm24\oslash
6\mp25\otimes
7\triangleleft26\bigcirc
8\triangleright27\diamond
9\cdot28\uplus
10\setminus29\bigtriangleup
11\star30\bigtriangledown
12\ast31\lhd
13\cup32\rhd
14\cap33\unlhd
15\sqcup34\unrhd
16\sqcap35⨿\amalg
17\vee36\wr
18\wedge37\dagger
19\circ38\ddagger

二元关系符 Binary relations

常见的二元关系符:

序号图标LaTeX序号图标LaTeX
1==49\gneq
2\ne50\geqq
3\neq51\ngeq
4\equiv52\ngeqq
5\not\equiv53\gneqq
6\doteq54\gvertneqq
7\doteqdot55\lessgtr
8=dff\stackrel{\mathrm{dff}}{=}=dff\stackrel{\mathrm{dff}}{=}56\lesseqgtr
9:=:=57\lesseqqgtr
10\sim58\gtrless
11\nsim59\gtreqless
12\backsim60\gtreqqless
13\thicksim61\leqslant
14\simeq62\nleqslant
15\backsimeq63\eqslantless
16\eqsim64\geqslant
17\cong65\ngeqslant
18\ncong66\eqslantgtr
19\approx67\lesssim
20\thickapprox68\lnsim
21\approxeq69\lessapprox
22\asymp70\lnapprox
23\propto71\gtrsim
24\varpropto72\gnsim
25<< /td><73\gtrapprox
26\nless74\gnapprox
27\ll75\prec
28≪̸\not\ll76\nprec
29\lll77\preceq
30⋘̸\not\lll78\npreceq
31\lessdot79\precneqq
3280\succ
33\ngtr81\nsucc
34\gg82\succeq
35≫̸\not\gg83\nsucceq
36\ggg84\succneqq
37⋙̸\not\ggg85\preccurlyeq
38\gtrdot86\curlyeqprec
39\le87\succcurlyeq
40\leq88\curlyeqsucc
41\lneq89\precsim
42\leqq90\precnsim
43\nleq91\precapprox
44\nleqq92\precnapprox
45\lneqq93\succsim
46\lvertneqq94\succnsim
47\ge95\succapprox
48\geq96\succnapprox

几何关系符号Geometric symbols

常见的几何关系符号:

序号图标LaTeX序号图标LaTeX
1\parallel14\lozenge
2\nparallel15\blacklozenge
3\shortparallel16\bigstar
4\nshortparallel17\bigcirc
5\perp18\triangle
6\angle19\bigtriangleup
7\sphericalangle20\bigtriangledown
8\measuredangle21\vartriangle
945∘45^\circ22\triangledown
10\Box23\blacktriangle
11\blacksquare24\blacktriangledown
12\diamond25\blacktriangleleft
13\Diamond \lozenge26\blacktriangleright

逻辑符号 Logic symbols

常用的逻辑关系运算符:

序号图标LaTeX序号图标LaTeX
1\forall20¬\neg
2\exists21\not\operatorname{R}
3\nexists22\bot
4\therefore23\top
5\because24\vdash
6&\And25\dashv
7\lor26\vDash
8\vee27\Vdash
9\curlyvee28\models
10\bigvee29\Vvdash
11\land30\nvdash
12\wedge31\nVdash
13\curlywedge32\nvDash
14\bigwedge33\nVDash
15\bar{q}34\ulcorner
16abc¯\bar{abc}35\urcorner
17q―\overline{q}36\llcorner
18abc―\overline{abc}37\lrcorner
19¬\lnot

集合Sets

集合相关的符号:空集、并集、子集、包含与被包含、存在于等各种符号

序号图标LaTeX序号图标LaTeX
1{}{}23\sqsubset
2\emptyset24\supset
3\varnothing25\Supset
4\in26\sqsupset
5\notin27\subseteq
6\ni28\nsubseteq
7\cap29\subsetneq
8\Cap30\varsubsetneq
9\sqcap31\sqsubseteq
10\bigcap32\supseteq
11\cup33\nsupseteq
12\Cup34\supsetneq
13\sqcup35\varsupsetneq
14\bigcup36\sqsupseteq
15\bigsqcup37\subseteqq
16\uplus38\nsubseteqq
17\biguplus39\subsetneqq
18\setminus40\varsubsetneqq
19\smallsetminus41\supseteqq
20×\times42\nsupseteqq
21\subset43\supsetneqq
22\Subset44\varsupsetneqq

箭头Arrows

和箭头相关的各种符号:

序号图标LaTeX序号图标LaTeX
1\Rrightarrow36\longmapsto
2\Lleftarrow37\rightharpoonup
3\Rightarrow38\rightharpoondown
4\nRightarrow39\leftharpoonup
5\Longrightarrow40\leftharpoondown
6\implies41\upharpoonleft
7\Leftarrow42\upharpoonright
8\nLeftarrow43\downharpoonleft
9\Longleftarrow44\downharpoonright
10\Leftrightarrow45\rightleftharpoons
11\nLeftrightarrow46\leftrightharpoons
12\Longleftrightarrow47\curvearrowleft
13\iff48\circlearrowleft
14\Uparrow49\Lsh
15\Downarrow50\upuparrows
16\Updownarrow51\rightrightarrows
17\rightarrow52\rightleftarrows
18\to53\rightarrowtail
19\nrightarrow54\looparrowright
20\longrightarrow55\curvearrowright
21\leftarrow56\circlearrowright
22\gets57\Rsh
23\nleftarrow58\downdownarrows
24\longleftarrow59\leftleftarrows
25\leftrightarrow60\leftrightarrows
26\nleftrightarrow61\leftarrowtail
27\longleftrightarrow62\looparrowleft
28\uparrow63\hookrightarrow
29\downarrow64\hookleftarrow
30\updownarrow65\multimap
31\nearrow66\leftrightsquigarrow
32\swarrow67\rightsquigarrow
33\nwarrow68\twoheadrightarrow
34\searrow69\twoheadleftarrow
35\mapsto

特殊关系符号

其他少见的特殊符号:

序号图标LaTeX序号图标LaTeX
1\infty33\flat
2\aleph34\natural
3\complement35\sharp
4\backepsilon36\diagup
5ð\eth37\diagdown
6\Finv38\centerdot
7\hbar39\ltimes
8Im\Im40\rtimes
9ı\imath41\leftthreetimes
10ȷ\jmath42\rightthreetimes
11𝕜k\Bbbk43\eqcirc
12\ell44\circeq
13\mho45\triangleq
14\wp46\bumpeq
15Re\Re47\Bumpeq
16\circledS48\doteqdot
17⨿\amalg49\risingdotseq
18%%50\fallingdotseq
19\dagger51\intercal
20\ddagger52\barwedge
21\ldots53\veebar
22\cdots54\doublebarwedge
23⌣\smile\smile55\between
24⌢\frown\frown56\pitchfork
25\wr57\vartriangleleft
26\triangleleft58\ntriangleleft
27\triangleright59\vartriangleright
28\diamondsuit60\ntriangleright
29\heartsuit61\trianglelefteq
30\clubsuit62\ntrianglelefteq
31\spadesuit63\trianglerighteq
32\Game64\ntrianglerighteq

下面介绍和数学运算相关的符号:

分数Fractions

编号类型样式LaTeX
1分数 Fractions24x=0.5xor24x=0.5x\frac{2}{4}x=0.5x or {2 \over 4}x=0.5x42x=0.5xor42x=0.5x\frac{2}{4}x=0.5x or {2 \over 4}x=0.5x
2小型分数 Small fractions (force \textstyle)24x=0.5x\tfrac{2}{4}x = 0.5x42x=0.5x\tfrac{2}{4}x = 0.5x
3大型分数(不嵌套) Large (normal) fractions (force \displaystyle)24=0.52c+2d+24=a\dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a42=0.5c+d+4222=a\dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a
4大型分数(嵌套) Large (nested) fractions2c+2d+24=a\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = ac+d+4222=a\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a
5约分线的使用 Cancellations in fractionsx1+yy=x2\cfrac{x}{1 + \cfrac{\cancel{y}}{\cancel{y}}} = \cfrac{x}{2}1+yyx=2x\cfrac{x}{1 + \cfrac{\cancel{y}}{\cancel{y}}} = \cfrac{x}{2}

标准数值函数 Standard numerical functions

编号样式LaTeX
1exp⁡ab=ab,exp⁡b=eb,10m\exp_a b = a^b, \exp b = e^b, 10^mexpab=ab,expb=eb,10m\exp_a b = a^b, \exp b = e^b, 10^m
2ln⁡c,lg⁡d=log⁡e,log⁡10f\ln c, \lg d = \log e, \log_{10} flnc,lgd=loge,log10f\ln c, \lg d = \log e, \log_{10} f
3sin⁡a,cos⁡b,tan⁡c,cot⁡d,sec⁡e,csc⁡f\sin a, \cos b, \tan c, \cot d, \sec e, \csc fsina,cosb,tanc,cotd,sece,cscf\sin a, \cos b, \tan c, \cot d, \sec e, \csc f
4arcsin⁡a,arccos⁡b,arctan⁡c\arcsin a, \arccos b, \arctan carcsina,arccosb,arctanc\arcsin a, \arccos b, \arctan c
5arccot⁡d,arcsec⁡e,arccsc⁡f\operatorname{arccot} d, \operatorname{arcsec} e, \operatorname{arccsc} farccotd,arcsece,arccscf\operatorname{arccot} d, \operatorname{arcsec} e, \operatorname{arccsc} f
6sinh⁡a,cosh⁡b,tanh⁡c,coth⁡d\sinh a, \cosh b, \tanh c, \coth dsinha,coshb,tanhc,cothd\sinh a, \cosh b, \tanh c, \coth d
7sh⁡k,ch⁡l,th⁡m,coth⁡n\operatorname{sh}k, \operatorname{ch}l, \operatorname{th}m, \operatorname{coth}nshk,chl,thm,cothn\operatorname{sh}k, \operatorname{ch}l, \operatorname{th}m, \operatorname{coth}n
8argsh⁡o,argch⁡p,argth⁡q\operatorname{argsh}o, \operatorname{argch}p, \operatorname{argth}qargsho,argchp,argthq\operatorname{argsh}o, \operatorname{argch}p, \operatorname{argth}q
9sgn⁡r,∣s∣\operatorname{sgn}r, \left\vert s \right\vertsgnr,s\operatorname{sgn}r, \left\vert s \right\vert
10min⁡(x,y),max⁡(x,y)\min(x,y), \max(x,y)min(x,y),max(x,y)\min(x,y), \max(x,y)

根式符号 Radicals

编号样式LaTeX
14\sqrt 44\sqrt 4
2√\surd\surd
3π\sqrt{\pi}π\sqrt{\pi}
4πn\sqrt[n]{\pi}nπ\sqrt[n]{\pi}
5x3+y323\sqrt[3]{\frac{x^3+y^3}{2}}32x3+y3\sqrt[3]{\frac{x^3+y^3}{2}}

微分和导数 Differentials and derivatives

编号样式LaTeX
1dt,dt,∂t,∇ψdt, \mathrm{d}t, \partial t, \nabla\psi
2dy/dx,dy/dx,dydx,dydx,∂2∂x1∂x2ydy/dx, \mathrm{d}y/\mathrm{d}x, \frac{dy}{dx}, \frac{\mathrm{d}y}{\mathrm{d}x}, \frac{\partial^2}{\partial x_1\partial x_2}ydy/dx,dy/dx,dxdy,dxdy,x1x22ydy/dx, \mathrm{d}y/\mathrm{d}x, \frac{dy}{dx}, \frac{\mathrm{d}y}{\mathrm{d}x}, \frac{\partial^2}{\partial x_1\partial x_2}y
3′,‵,f′,f′,f′′,f(3),y˙,y¨\prime, \backprime, f^\prime, f', f'', f^{(3)}, \dot y, \ddot y,,f,f,f′′,f(3),y˙,y¨\prime, \backprime, f^\prime, f', f'', f^{(3)}, \dot y, \ddot y

同余与模算术 Modular arithmetic

编号样式LaTeX
1sk≡0(modm)s_k \equiv 0 \pmod{m}sk0(modm)s_k \equiv 0 \pmod{m}
2a mod ba \bmod bamodba \bmod b
3gcd⁡(m,n),lcm⁡(m,n)\gcd(m, n), \operatorname{lcm}(m, n)gcd(m,n),lcm(m,n)\gcd(m, n), \operatorname{lcm}(m, n)
4∣,∤,∣,∤\mid, \nmid, \shortmid, \nshortmid,,,\mid, \nmid, \shortmid, \nshortmid

极限 Limits

编号样式LaTeX
1lim⁡n→∞xn\lim_{n \to \infty}x_nlimnxn\lim_{n \to \infty}x_n
2lim⁡n→∞xn\textstyle \lim_{n \to \infty}x_nlimnxn\textstyle \lim_{n \to \infty}x_n

界限与投影 Bounds and Projections

编号样式LaTeX
1min⁡x,max⁡y,inf⁡s,sup⁡t\min x, \max y, \inf s, \sup tminx,maxy,infs,supt\min x, \max y, \inf s, \sup t
2lim⁡u,lim inf⁡v,lim sup⁡w\lim u, \liminf v, \limsup wlimu,liminfv,limsupw\lim u, \liminf v, \limsup w
3dim⁡p,deg⁡q,det⁡m,ker⁡ϕ\dim p, \deg q, \det m, \ker\phidimp,degq,detm,kerϕ\dim p, \deg q, \det m, \ker\phi
4Pr⁡j,hom⁡l,∥z∥,arg⁡z\Pr j, \hom l, \lVert z \rVert, \arg zPrj,homl,z,argz\Pr j, \hom l, \lVert z \rVert, \arg z

积分 Integral

编号样式LaTeX
1∫13e3/xx2 dx\int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx13x2e3/xdx\int\limits_{1}^{3}\frac{e^3/x}{x^2}, dx
2∫13e3/xx2 dx\int_{1}^{3}\frac{e^3/x}{x^2}\, dx13x2e3/xdx\int_{1}^{3}\frac{e^3/x}{x^2}, dx
3∫−NNexdx\textstyle \int\limits_{-N}^{N} e^x dxNNexdx\textstyle \int\limits_{-N}^{N} e^x dx
4∫−NNexdx\textstyle \int_{-N}^{N} e^x dxNNexdx\textstyle \int_{-N}^{N} e^x dx
5∬Ddx dy\iint\limits_D dx\,dyDdxdy\iint\limits_D dx,dy
6∭Edx dy dz\iiint\limits_E dx\,dy\,dzEdxdydz\iiint\limits_E dx,dy,dz
7\iiiint\limits_F dx\,dy\,dz\,dt\iiiint\limits_F dx,dy,dz,dt
8∫(x,y)∈Cx3 dx+4y2 dy\int_{(x,y)\in C} x^3\, dx + 4y^2\, dy(x,y)Cx3dx+4y2dy\int_{(x,y)\in C} x^3, dx + 4y^2, dy
9∮(x,y)∈Cx3 dx+4y2 dy\oint_{(x,y)\in C} x^3\, dx + 4y^2\, dy(x,y)Cx3dx+4y2dy\oint_{(x,y)\in C} x^3, dx + 4y^2, dy
10\unicode8751\unicodex222FC\unicode{8751} \unicode{x222F}_C\unicode8751\unicodex222FC\unicode{8751} \unicode{x222F}_C
11\unicode8752\unicodex2230C\unicode{8752} \unicode{x2230}_C\unicode8752\unicodex2230C\unicode{8752} \unicode{x2230}_C
12\unicode8753\unicodex2231c\unicode{8753} \unicode{x2231}_c \unicode8753\unicodex2231c\unicode{8753} \unicode{x2231}_c
13\unicode8754\unicodex2232c\unicode{8754} \unicode{x2232}_c \unicode8754\unicodex2232c\unicode{8754} \unicode{x2232}_c
14\unicode8755\unicodex2233c\unicode{8755} \unicode{x2233}_c\unicode8755\unicodex2233c\unicode{8755} \unicode{x2233}_c

最后3组图标的区别在于箭头的方向:

其他运算符号operators

编号类别样式LaTeX
1求和 Summation∑ab\sum_{a}^{b}ab\sum_{a}^{b}
2求和 Summation∑ab\textstyle \sum_{a}^{b}ab\textstyle \sum_{a}^{b}
3连乘积 Product∏ab\prod_{a}^{b}ab\prod_{a}^{b}
4连乘积 Product∏ab\textstyle \prod_{a}^{b}ab\textstyle \prod_{a}^{b}
5余积 Coproduct∐ab\coprod_{a}^{b}ab\coprod_{a}^{b}
6余积 Coproduct∐ab\textstyle \coprod_{a}^{b}ab\textstyle \coprod_{a}^{b}
7并集 Union⋃ab\bigcup_{a}^{b}ab\bigcup_{a}^{b}
8并集 Union⋃ab\textstyle \bigcup_{a}^{b}ab\textstyle \bigcup_{a}^{b}
9交集 Intersection⋂ab\bigcap_{a}^{b}ab\bigcap_{a}^{b}
10交集 Intersection⋂ab\textstyle \bigcap_{a}^{b}ab\textstyle \bigcap_{a}^{b}
11析取 Disjunction⋁ab\bigvee_{a}^{b}ab\bigvee_{a}^{b}
12析取 Disjunction⋁ab\textstyle \bigvee_{a}^{b}ab\textstyle \bigvee_{a}^{b}
13合取 Conjunction⋀ab\bigwedge_{a}^{b}ab\bigwedge_{a}^{b}
14合取 Conjunction⋀ab\textstyle \bigwedge_{a}^{b}ab\textstyle \bigwedge_{a}^{b}

上下标Sub & Super

编号类型样式代码
1上标 Superscripta2,ax+3a^2, a^{x+3}a2,ax+3a^2, a^{x+3}
2下标 Subscripta2a_2a2a_2
3组合1 Grouping1030a2+210^{30} a^{2+2}1030a2+210^{30} a^{2+2}
4组合2 Groupingai,jbf′a_{i,j} b_{f'}ai,jbfa_{i,j} b_{f'}
5上下标混合1 Combining sub & superx23x_2^3x23x_2^3
6上下标混合2 Combining sub & superx23{x_2}^3x23{x_2}^3
7上标的上标 Super super1010810^{10^{8}}1010810^{10^{8}}
8混合标识1 Preceding and/or additional sub & super\sideset1234Xab\sideset{_1^2}{_3^4}X_a^b\sideset1234Xab\sideset{_1^2}{_3^4}X_a^b
9混合标识2 Preceding and/or additional sub & super12!Ω34{}_1^2!\Omega_3^412!Ω34{}_1^2!\Omega_3^4
10顶标底标1 Stackingωα\overset{\alpha}{\omega}ωα\overset{\alpha}{\omega}
11顶标底标2 Stackingωα\underset{\alpha}{\omega}αω\underset{\alpha}{\omega}
12顶标底标3 Stackingωγα\overset{\alpha}{\underset{\gamma}{\omega}}γωα\overset{\alpha}{\underset{\gamma}{\omega}}
13顶标底标4 Stackingωα\stackrel{\alpha}{\omega}ωα\stackrel{\alpha}{\omega}
14导数1 Derivativesx′,y′′,f′,f′′x', y'', f', f''x,y′′,f,f′′x', y'', f', f''
15导数2 Derivativesx′,y′′x^\prime, y^{\prime\prime}x,y′′x^\prime, y^{\prime\prime}
16导数 Derivative dotsx˙,x¨\dot{x}, \ddot{x}x˙,x¨\dot{x}, \ddot{x}
17下划线、上划线与向量1 Underlines, overlines, vectorsa^ bˉ c⃗\hat a \ \bar b \ \vec ca^ bˉ c\hat a \ \bar b \ \vec c
18下划线、上划线与向量2 Underlines, overlines, vectorsab→ cd← def^\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}ab cd def\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}
19下划线、上划线与向量3 Underlines, overlines, vectorsghi‾ jkl‾\overline{g h i} \ \underline{j k l}ghi jkl\overline{g h i} \ \underline{j k l}
20弧度 Arc (workaround)AB⌢\overset{\frown} {AB}AB\overset{\frown} {AB}
21箭头 ArrowsA←n+μ−1B→Tn±i−1CA \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} CAn+μ1Bn±i1TCA \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C
22大括号 Overbraces1+2+⋯+100⏞5050\overbrace{ 1+2+\cdots+100 }^{5050}1+2++1005050\overbrace{ 1+2+\cdots+100 }^{5050}
23底部大括号 Underbracesa+b+⋯+z⏟26\underbrace{ a+b+\cdots+z }_{26}26a+b++z\underbrace{ a+b+\cdots+z }_{26}
24求和运算 Sum∑k=1Nk2\sum_{k=1}^N k^2k=1Nk2\sum_{k=1}^N k^2
25文本模式下的求和运算 Sum (force \textstyle)∑k=1Nk2\textstyle \sum_{k=1}^N k^2k=1Nk2\textstyle \sum_{k=1}^N k^2
26分式中的求和运算1 Sum in a fraction (default \textstyle)∑k=1Nk2a\frac{\sum_{k=1}^N k^2}{a}ak=1Nk2\frac{\sum_{k=1}^N k^2}{a}
27分式中的求和运算2 Sum in a fraction (force \displaystyle)∑k=1Nk2a\frac{\displaystyle \sum_{k=1}^N k^2}{a}ak=1Nk2\frac{\displaystyle \sum_{k=1}^N k^2}{a}
28分式中的求和运算3 Sum in a fraction (alternative limits style)∑Nk=1k2a\frac{\sum\limits{N}_{k=1} k^2}{a}aNk=1k2\frac{\sum\limits{N}_{k=1} k^2}{a}
29乘积运算 Product∏i=1Nxi\prod_{i=1}^N x_ii=1Nxi\prod_{i=1}^N x_i
30乘积运算 Product (force \textstyle)∏i=1Nxi\textstyle \prod_{i=1}^N x_ii=1Nxi\textstyle \prod_{i=1}^N x_i
31副乘运算 Coproduct∐i=1Nxi\coprod_{i=1}^N x_ii=1Nxi\coprod_{i=1}^N x_i
32副乘运算 Coproduct (force \textstyle)∐i=1Nxi\textstyle \coprod_{i=1}^N x_ii=1Nxi\textstyle \coprod_{i=1}^N x_i
33极限 Limitlim⁡n→∞xn\lim_{n \to \infty}x_nlimnxn\lim_{n \to \infty}x_n
34极限 Limit (force \textstyle)lim⁡n→∞xn\textstyle \lim_{n \to \infty}x_nlimnxn\textstyle \lim_{n \to \infty}x_n
35积分 Integral∫13e3/xx2 dx\int\limits_{1}{3}\frac{e3/x}{x^2}\, dx13x2e3/xdx\int\limits_{1}{3}\frac{e3/x}{x^2}, dx
36积分 Integral (alternative limits style)∫13e3/xx2 dx\int_{1}{3}\frac{e3/x}{x^2}\, dx13x2e3/xdx\int_{1}{3}\frac{e3/x}{x^2}, dx
37积分 Integral (force \textstyle)∫−NNexdx\textstyle \int\limits_{-N}^{N} e^x dxNNexdx\textstyle \int\limits_{-N}^{N} e^x dx
38积分 Integral (force \textstyle, alternative limits style)∫−NNexdx\textstyle \int_{-N}^{N} e^x dxNNexdx\textstyle \int_{-N}^{N} e^x dx
39双重积分 Double integral∬Ddx dy\iint\limits_D dx\,dyDdxdy\iint\limits_D dx,dy
40三重积分 Triple integral∭Edx dy dz\iiint\limits_E dx\,dy\,dzEdxdydz\iiint\limits_E dx,dy,dz
41四重积分 Quadruple integral\iiiint\limits_F dx\,dy\,dz\,dt\iiiint\limits_F dx,dy,dz,dt
42路径积分 Line or path integral∫(x,y)∈Cx3 dx+4y2 dy\int_{(x,y)\in C} x^3\, dx + 4y^2\, dy(x,y)Cx3dx+4y2dy\int_{(x,y)\in C} x^3, dx + 4y^2, dy
43环路积分 Closed line or path integral∮(x,y)∈Cx3 dx+4y2 dy\oint_{(x,y)\in C} x^3\, dx + 4y^2\, dy(x,y)Cx3dx+4y2dy\oint_{(x,y)\in C} x^3, dx + 4y^2, dy
44交集 Intersections⋂i=1nEi\bigcap_{i=1}^n E_ii=1nEi\bigcap_{i=1}^n E_i
45并集 Unions⋃i=1nEi\bigcup_{i=1}^n E_ii=1nEi\bigcup_{i=1}^n E_i

矩阵与多行列式 Matrices & Multilines

编号类型样式LaTeX
1二项式系数 Binomial coefficients(nk)\binom{n}{k}(kn)\binom{n}{k}
2小型二项式系数 Small binomial coefficients (force \textstyle)(nk)\tbinom{n}{k}(kn)\tbinom{n}{k}
3大型二项式系数 Large (normal) binomial coefficients (force \displaystyle)(nk)\dbinom{n}{k}(kn)\dbinom{n}{k}
4矩阵1 Matricesxyzv\begin{matrix} x & y \\ z & v \end{matrix}xzyv\begin{matrix} x & y \ z & v \end{matrix}
5矩阵2 Matrices∣xyzv∣\begin{vmatrix} x & y \\ z & v \end{vmatrix}xzyv\begin{vmatrix} x & y \ z & v \end{vmatrix}
6矩阵3 Matrices∥xyzv∥\begin{Vmatrix} x & y \\ z & v \end{Vmatrix}xzyv\begin{Vmatrix} x & y \ z & v \end{Vmatrix}
7矩阵4 Matrices[0⋯0⋮⋱⋮0⋯0]\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}0000\begin{bmatrix} 0 & \cdots & 0 \ \vdots & \ddots & \vdots \ 0 & \cdots & 0 \end{bmatrix}
8矩阵5 Matrices{xyzv}\begin{Bmatrix} x & y \\ z & v \end{Bmatrix}{xzyv}\begin{Bmatrix} x & y \ z & v \end{Bmatrix}
9矩阵6 Matrices(xyzv)\begin{pmatrix} x & y \\ z & v \end{pmatrix}(xzyv)\begin{pmatrix} x & y \ z & v \end{pmatrix}
10矩阵7 Matrices(abcd)\bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr)(acbd)\bigl( \begin{smallmatrix}
a&b\
c&d
\end{smallmatrix} \bigr)
11条件定义 Case distinctionsf(n)={n/2,if n is even3n+1,if n is oddf(n) = \begin{cases} n/2, & \text{if }n\text{ is even} \\ 3n+1, & \text{if }n\text{ is odd} \end{cases}f(n)={n/2,3n+1,if n is evenif n is oddf(n) = \begin{cases} n/2, & \text{if }n\text{ is even} \ 3n+1, & \text{if }n\text{ is odd} \end{cases}
12多行等式1 Multiline equations\begin{align} f(x) & = (a+b)^2\\ & = a^2+2ab+b^2 \end{align}\begin{align} f(x) & = (a+b)^2\ & = a^2+2ab+b^2 \end{align}
13多行等式2 Multiline equations\begin{alignat}{2} f(x) & = (a-b)^2 \\ & = a^2-2ab+b^2 \end{alignat}\begin{alignat}{2} f(x) & = (a-b)^2 \ & = a^2-2ab+b^2 \end{alignat}
14多行等式3 Multiline equationsz=af(x,y,z)=x+y+z\begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array}zf(x,y,z)==ax+y+z\begin{array}{lcl} z & = & a \ f(x,y,z) & = & x + y + z \end{array}
15多行等式4 Multiline equationsz=af(x,y,z)=x+y+z\begin{array}{lcr} z & = & a \\ f(x,y,z) & = & x + y + z \end{array}zf(x,y,z)==ax+y+z$\begin{array}{lcr} z & = & a \ f(x,y,z) & = & x + y + z \end{array}
16方程组 Simultaneous equations{3x+5y+z7x−2y+4z−6x+3y+2z\begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases}3x+5y+z7x2y+4z6x+3y+2z\begin{cases} 3x + 5y + z \ 7x - 2y + 4z \ -6x + 3y + 2z \end{cases}
17数组 Arrays$\begin{array}{ccc} a & b & S \ \hline 0 & 0 & 1 \ 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{array}$\begin{array}{ | c | c | c | } a & b & S \ \hline 0 & 0 & 1 \ 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{array}

括号Brackets

编号类型样式LaTeX
1圆括号、小括号 Parentheses(ab)\left ( \frac{a}{b} \right )(ba)\left ( \frac{a}{b} \right )
2方括号、中括号 Brackets[ab][ab]\left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack[ba][ba]\left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack
3花括号、大括号 Braces{ab}{ab}\left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace{ba}{ba}\left { \frac{a}{b} \right } \quad \left \lbrace \frac{a}{b} \right \rbrace
4角括号 Angle brackets⟨ab⟩\left \langle \frac{a}{b} \right \rangleba\left \langle \frac{a}{b} \right \rangle
5单竖线和双竖线 Bars and double bars$\frac{a}{b}\frac{c}{d}$|\frac{a}{b}| ||\frac{c}{d}||
6取整函数与取顶函数 Floor and ceiling functions:⌊ab⌋⌈cd⌉\left \lfloor \frac{a}{b} \right \rfloor \quad \left \lceil \frac{c}{d} \right \rceilbadc\left \lfloor \frac{a}{b} \right \rfloor \quad \left \lceil \frac{c}{d} \right \rceil
7斜线与反斜线 Slashes and backslashes/ab\\left / \frac{a}{b} \right \backslash/ba\\left / \frac{a}{b} \right \backslash
8上下箭头 Up, down, and up-down arrows↑ab↓⇑ab⇓↕ab⇕\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrowbababa\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow
9混合括号 Delimiters can be mixed,as long as \left and \right match$\left [0,1 \right ) \left \langle \psi \right$\left [ 0,1 \right ) \left \langle \psi \right |
10单侧括号,使用\left. 和 \right.(带有英文句号)AB}→X\left. \frac{A}{B} \right \} \to XBA}X\left. \frac{A}{B} \right } \to X
11括号的大小1(((((… ]]]]]( \bigl( \Bigl( \biggl( \Biggl( \dots \Biggr] \biggr] \Bigr] \bigr] ](((((]]]]]( \bigl( \Bigl( \biggl( \Biggl( \dots \Biggr] \biggr] \Bigr] \bigr] ]
12括号的大小2⌊⌊⌊⌊⌊⋯<br/>⌉⌉⌉⌉⌉\lfloor \bigl\lfloor \Bigl\lfloor \biggl\lfloor \Biggl\lfloor \dots<br/>\Biggr\rceil \biggr\rceil \Bigr\rceil \bigr\rceil \rceil<br/>\lfloor \bigl\lfloor \Bigl\lfloor \biggl\lfloor \Biggl\lfloor \dots
\Biggr\rceil \biggr\rceil \Bigr\rceil \bigr\rceil \rceil
13括号的大小3↑↑↑↑↑⋯<br/>⇓⇓⇓⇓⇓\uparrow \big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots<br/>\Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow \Downarrow<br/>\uparrow \big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots
\Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow \Downarrow
14括号的大小4↕↕↕↕↕⋯<br/>⇕⇕⇕⇕⇕\updownarrow \big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots<br/>\Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow \Updownarrow<br/>\updownarrow \big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots
\Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow \Updownarrow
15括号的大小5/////⋯<br/>\\\\\/ \big/ \Big/ \bigg/ \Bigg/ \dots<br/>\Bigg\backslash \bigg\backslash \Big\backslash \big\backslash \backslash/////<br/>\\\\\/ \big/ \Big/ \bigg/ \Bigg/ \dots
\Bigg\backslash \bigg\backslash \Big\backslash \big\backslash \backslash

注意:在使用大括号的时候需要添加转义字符\{\}

空格与换行

关于空格的使用可以参考下表。

编号样式LaTeX中文说明英文说明
1aba \qquad baba \qquad b双空格
2aba \quad baba \quad b单空格
3a ba\ ba ba\ b字符空格
4a ba \text{ } ba ba \text{ } b文本模式中的字符空格
5a  ba\;baba;b大空格
6a ba\,baba,b小空格
7abababab极小空格(用于乘因子)
8aba baba b极小空格(用于区分其它语法)
9ab\mathit{ab}ab\mathit{ab}没有空格(用于多字母变量)
10a ⁣ba\!baba\!b负空格

关于换行,使用一对\\进行强制换行,看一个案例:

f(x,y)=a2+b2+2ab=(a+b)2f(x,y) = a^2+b^2+2ab \\ =(a+b)^2f(x,y)=a2+b2+2ab=(a+b)2

实际源码为:

$$f(x,y) = a^2+b^2+2ab \\ =(a+b)^2$$
全部评论

相关推荐

评论
点赞
收藏
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务