牛客练习赛97 G
依古比古是OP
https://ac.nowcoder.com/acm/contest/11187/G
预处理枚举答案位置,然后用卷积得到询问答案。
但是牛客机子咋怎么快呀?
跑 MTT 是什么鬼呀。
QAQ
#include <algorithm>
#include <math.h>
#include <stdio.h>
#include <vector>
typedef long long llt;
typedef unsigned uint;typedef unsigned long long ullt;
typedef bool bol;typedef char chr;typedef void voi;
typedef double dbl;
template<typename T>bol _max(T&a,T b){return(a<b)?a=b,true:false;}
template<typename T>bol _min(T&a,T b){return(b<a)?a=b,true:false;}
template<typename T>T power(T base,T index,T mod){return((index<=1)?(index?base:1):(power(base*base%mod,index>>1,mod)*power(base,index&1,mod)))%mod;}
template<typename T>T lowbit(T n){return n&-n;}
template<typename T>T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<typename T>T lcm(T a,T b){return(a!=0||b!=0)?a/gcd(a,b)*b:(T)0;}
template<typename T>T exgcd(T a,T b,T&x,T&y){if(!b)return y=0,x=1,a;T ans=exgcd(b,a%b,y,x);y-=a/b*x;return ans;}
const dbl Pi=acos(-1);
class cpx
{
public:
dbl a,b;
cpx():a(0),b(0){}
cpx(dbl a):a(a),b(0){}
cpx(dbl a,dbl b):a(a),b(b){}
inline voi unit(dbl alpha){a=cos(alpha),b=sin(alpha);}
inline cpx friend operator+(cpx a,cpx b){return cpx(a.a+b.a,a.b+b.b);}
inline cpx friend operator-(cpx a,cpx b){return cpx(a.a-b.a,a.b-b.b);}
inline cpx operator-(){return cpx(-a,-b);}
inline cpx friend operator*(cpx a,cpx b){return cpx(a.a*b.a-a.b*b.b,a.b*b.a+b.b*a.a);}
inline cpx friend operator/(cpx a,ullt v){return cpx(a.a/v,a.b/v);}
inline cpx conj(){return cpx(a,-b);}
inline cpx mul_i(){return cpx(-b,a);}
inline cpx div_i(){return cpx(b,-a);}
public:
inline cpx&operator=(ullt v){return a=v,b=0,*this;}
inline cpx&operator+=(cpx v){return*this=*this+v;}
inline cpx&operator-=(cpx v){return*this=*this-v;}
inline cpx&operator*=(cpx v){return*this=*this*v;}
inline cpx&operator/=(ullt v){return a/=v,b/=v,*this;}
inline dbl&real(){return a;}
inline dbl&imag(){return b;}
};
const ullt Mod=1e9+7;
inline ullt chg(ullt v){return(v<Mod)?v:v-Mod;}
class poly
{
private:
std::vector<ullt>V;
public:
class FFT
{
private:
std::vector<uint>V;std::vector<cpx>G;uint len;
public:
inline uint length(){return len;}
voi bzr(uint length)
{
uint p=0;len=1,V.clear(),G.clear();
while(length){p++,len<<=1,length>>=1;}
V.resize(len),G.resize(len);
for(uint i=0;i<len;++i)V[i]=((i&1)?(V[i>>1]|len)>>1:(V[i>>1]>>1)),G[i].unit(Pi*2/len*i);
}
voi fft(std::vector<cpx>&y,bol op)
{
if(y.size()<len)y.resize(len);
for(uint i=0;i<len;i++)if(V[i]<i)std::swap(y[i],y[V[i]]);
for(uint h=2;h<=len;h<<=1)for(uint j=0;j<len;j+=h)for(uint k=j;k<j+(h>>1);k++){cpx u=y[k],t=G[len/h*(k-j)]*y[k+h/2];y[k]=u+t,y[k+h/2]=u-t;}
if(op){uint l=1,r=len-1;while(l<r)std::swap(y[l++],y[r--]);for(uint i=0;i<len;i++)y[i]/=len;}
}
voi fft_fft(std::vector<cpx>&a,std::vector<cpx>&b,bol op)
{
if(a.size()<len)a.resize(len);
if(b.size()<len)b.resize(len);
for(uint i=0;i<len;i++)a[i]+=b[i].mul_i();
fft(a,op),b[0]=a[0].conj();for(uint i=1;i<len;i++)b[i]=a[len-i].conj();
for(uint i=0;i<len;i++){cpx p=a[i],q=b[i];a[i]=(p+q)/2llu,b[i]=(p-q).div_i()/2llu;}
}
};
public:
poly(){V.clear();}
poly(std::vector<ullt>V){for(uint i=0;i<V.size();i++)push(V[i]%Mod);cut_zero();}
inline bol empty(){return cut_zero(),!size();}
inline voi bzr(){V.clear();}
inline voi push(ullt v){V.push_back(v%Mod);}
inline voi pop(){V.pop_back();}
inline ullt val(uint n){return(n<V.size())?V[n]:0;}
inline uint deg(){return V.size()-1;}
inline uint size(){return V.size();}
inline voi add(uint p,ullt v)
{
if(deg()<p)chg_deg(p);
V[p]=(V[p]+v)%Mod;
}
inline poly friend operator+(poly a,ullt v){a.add(0,v);return a;}
poly friend operator+(poly a,poly b)
{
uint len=std::max(a.size(),b.size());
a.chg_siz(len),b.chg_siz(len);
for(uint i=0;i<len;i++)a[i]=chg(a[i]+b[i]);
a.cut_zero();
return a;
}
poly friend operator-(poly a,poly b)
{
uint len=std::max(a.size(),b.size());
a.chg_siz(len),b.chg_siz(len);
for(uint i=0;i<len;i++)a[i]=chg(a[i]+Mod-b[i]);
a.cut_zero();
return a;
}
poly operator-()
{
cut_zero();uint len=size();
poly ans;ans.chg_siz(len);
for(uint i=0;i<len;i++)ans[i]=chg(Mod-V[i]);
return ans;
}
poly friend operator*(poly a,poly b)
{
FFT s;poly p;
uint n=a.deg(),m=b.deg(),len;
s.bzr(n+m+1),len=s.length();
std::vector<cpx>v1(len),v2(len),v3(len),v4(len);
for(uint i=0;i<len;i++)v3[i]=cpx(a.val(i)&32767),v1[i]=cpx(a.val(i)>>15),v4[i]=cpx(b.val(i)&32767),v2[i]=cpx(b.val(i)>>15);
s.fft_fft(v1,v2,0),s.fft_fft(v3,v4,0);
for(uint i=0;i<len;i++)v4[i]=(v3[i]+v1[i].mul_i())*v4[i],v2[i]=(v3[i]+v1[i].mul_i())*v2[i];
s.fft(v2,1),s.fft(v4,1),p.chg_deg(n+m);for(uint i=0;i<=n+m;i++)p[i]=(((ullt)(v2[i].b+.5)%Mod<<30)+((ullt)(v2[i].a+v4[i].b+.5)%Mod<<15)+(ullt)(v4[i].a+.5))%Mod;
p.cut_zero();
return p;
}
inline poly inv(){return inv(size());}
poly inv(uint prec)
{
poly ans,f,tmp,w;
llt x,y;
exgcd<llt>(val(0),Mod,x,y);
ans.push(x%(llt)Mod+(llt)Mod),f.push(val(0));
for(uint k=1;k<prec;k<<=1)
{
for(uint i=k;i<(k<<1);++i)f.push(val(i));
tmp=f*ans,tmp.chg_siz(k<<1),w.bzr();for(uint i=0;i<k;++i)w.push(tmp[i+k]);
w*=ans;for(uint i=0;i<k;++i)ans.push(Mod-w[i]);
}
return ans;
}
poly diff(){uint n=size();poly ans;for(uint i=1;i<n;++i)ans.push(V[i]*i);return ans;}
poly inte()
{
uint n=size();
poly ans;
ans.chg_deg(n);
ullt k=1;llt x,y;
std::vector<ullt>W;W.push_back(1),W.push_back(1);
for(uint i=2;i<n;++i)W.push_back(k=(k*i)%Mod);
exgcd<llt>(k*n%Mod,Mod,x,y);
k=chg(x%(llt)Mod+(llt)Mod);
for(uint i=n;i;--i)ans[i]=V[i-1]*k%Mod*W[i-1]%Mod,k=k*i%Mod;
return ans;
}
inline poly ln(){return(this->diff()*this->inv()).inte().chg_deg_ed(deg());}
inline poly exp(){return exp(size());}
poly exp(uint prec)
{
poly m;m.push(1);
if(empty())return m;
uint tp=1;
while(tp<prec)m*=*this-(m.diff()*m.inv(tp<<=1)).inte()+1,m.chg_siz(tp);
m.chg_siz(prec);
return m;
}
poly reverse(){poly ans;for(uint i=deg();~i;--i)ans.push(V[i]);return ans;}
inline poly operator/(poly b)
{
cut_zero(),b.cut_zero();uint m=size(),n=b.deg();if(m<=n)return poly();
poly f=this->reverse()*b.reverse().inv(m-n);f.chg_siz((m>n)?m-n:0);return f.reverse();
}
inline poly operator%(poly b){poly f=*this-*this/b*b;f.cut_zero();return f;}
voi cut_zero(){while(!V.empty()&&!V.back())V.pop_back();}
voi chg_siz(const uint siz){while(V.size()<siz)V.push_back(0);while(V.size()>siz)V.pop_back();}
inline voi chg_deg(const uint d){chg_siz(d+1);}
inline poly chg_deg_ed(const uint d){poly ans=*this;return ans.chg_deg(d),ans;}
public:
inline ullt&operator[](uint num){return V[num];}
poly&operator=(std::vector<ullt>V){bzr();for(uint i=0;i<V.size();i++)push(V[i]%Mod);cut_zero();return*this;}
poly&operator=(std::vector<cpx>V){bzr();for(uint i=0;i<V.size();i++)push((llt)(V[i].a+.5)%(llt)Mod+(llt)(Mod));cut_zero();return*this;}
poly&operator+=(poly b){return*this=*this+b;}
poly&operator-=(poly b){return*this=*this-b;}
poly&operator*=(poly b){return*this=*this*b;}
poly&operator/=(poly b){return*this=*this/b;}
poly&operator%=(poly b){return*this=*this%b;}
};
template<const ullt p=998244353>
class mod_ullt
{
private:
ullt v;
inline ullt chg(ullt w){return(w<p)?w:w-p;}
inline mod_ullt _chg(ullt w){mod_ullt ans;ans.v=(w<p)?w:w-p;return ans;}
public:
mod_ullt():v(0){}
mod_ullt(ullt v):v(v%p){}
bol empty(){return!v;}
inline ullt val(){return v;}
friend bol operator<(mod_ullt a,mod_ullt b){return a.v<b.v;}
friend bol operator>(mod_ullt a,mod_ullt b){return a.v>b.v;}
friend bol operator<=(mod_ullt a,mod_ullt b){return a.v<=b.v;}
friend bol operator>=(mod_ullt a,mod_ullt b){return a.v>=b.v;}
friend bol operator==(mod_ullt a,mod_ullt b){return a.v==b.v;}
friend bol operator!=(mod_ullt a,mod_ullt b){return a.v!=b.v;}
inline friend mod_ullt operator+(mod_ullt a,mod_ullt b){return a._chg(a.v+b.v);}
inline friend mod_ullt operator-(mod_ullt a,mod_ullt b){return a._chg(a.v+a.chg(p-b.v));}
inline friend mod_ullt operator*(mod_ullt a,mod_ullt b){return a.v*b.v;}
friend mod_ullt operator/(mod_ullt a,mod_ullt b){return b._power(p-2)*a.v;}
inline mod_ullt operator-(){return _chg(p-v);}
mod_ullt sqrt()
{
if(power(v,(p-1)>>1,p)!=1)return 0;
mod_ullt b=1;do b++;while(b._power((p-1)>>1)==1);
ullt t=p-1,s=0,k=1;while(!(t&1))s++,t>>=1;
mod_ullt x=_power((t+1)>>1),e=_power(t);
while(k<s)
{
if(e._power(1llu<<(s-k-1))!=1)x*=b._power((1llu<<(k-1))*t);
e=_power(p-2)*x*x,k++;
}
return _min(x,-x),x;
}
mod_ullt inv(){return _power(p-2);}
mod_ullt _power(ullt index){mod_ullt ans(1),w(v);while(index){if(index&1)ans*=w;w*=w,index>>=1;}return ans;}
voi read(){v=0;chr c;do c=getchar();while(c>'9'||c<'0');do v=(c-'0'+v*10)%p,c=getchar();while(c>='0'&&c<='9');v%=p;}
voi print()
{
static chr C[20];uint tp=0;
ullt w=v;do C[tp++]=w%10+'0',w/=10;while(w);
while(tp--)putchar(C[tp]);
}
voi println(){print(),putchar('\n');}
mod_ullt operator++(int){mod_ullt ans=*this;return v=chg(v+1),ans;}
public:
inline ullt&operator()(){return v;}
inline mod_ullt&operator+=(mod_ullt b){return*this=_chg(v+b.v);}
inline mod_ullt&operator-=(mod_ullt b){return*this=_chg(v+chg(p-b.v));}
inline mod_ullt&operator*=(mod_ullt b){return*this=v*b.v;}
mod_ullt&operator/=(mod_ullt b){return*this=b._power(p-2)*v;}
mod_ullt&operator++(){return v=chg(v+1),*this;}
};
typedef mod_ullt<Mod>modint;
uint A[1000005],n;
modint now,QAQ[1000005],X[1000005],Y[1000005];
bol check(uint p,uint x){now++;return p<=n&&A[p]<=x;}
voi get(uint x=0)
{
uint p=0,l=1;
while(check(p+l,x))p+=l,l<<=1;
while(l)
{
if(check(p+l,x))p+=l;
l>>=1;
}
}
poly P,Q;
int main()
{
uint m,q;scanf("%u%u%u",&n,&m,&q);
if(n>m)return puts("0"),0;
for(uint i=1;i<=n;i++)A[i]=1;
for(uint i=0;i<=n;i++)now=0,get(),QAQ[i]=now,A[i+1]=0;
X[0]=1;for(uint i=1;i<=m;i++)X[i]=X[i-1]*i;
Y[m]=X[m].inv();for(uint i=m;i;i--)Y[i-1]=Y[i]*i;
for(uint i=0;i<=n;i++)P.push((QAQ[i]*Y[i]*Y[n-i])());
for(uint i=0;i<=m-n;i++)Q.push((Y[i]*Y[m-n-i])());
P=P*Q;
for(uint i=0;i<=m;i++)QAQ[i]=P.val(i)*X[i]*X[m-i];
ullt ans=0;
for(uint i=1;i<=q;i++)
{
uint w;scanf("%u",&w);
ans^=QAQ[w]()*i;
}
printf("%llu\n",ans);
return 0;
}