深度学习之PyTorch实战(4)——多维度时间序列预测(LSTM)

样本数据如下:

                     pollution  dew  temp   press wnd_dir  wnd_spd  snow  rain
date                                                                          
2010-01-02 00:00:00      129.0  -16  -4.0  1020.0      SE     1.79     0     0
2010-01-02 01:00:00      148.0  -15  -4.0  1020.0      SE     2.68     0     0
2010-01-02 02:00:00      159.0  -11  -5.0  1021.0      SE     3.57     0     0
2010-01-02 03:00:00      181.0   -7  -5.0  1022.0      SE     5.36     1     0
2010-01-02 04:00:00      138.0   -7  -5.0  1022.0      SE     6.25     2     0
                       ...  ...   ...     ...     ...      ...   ...   ...
2014-12-31 19:00:00        8.0  -23  -2.0  1034.0      NW   231.97     0     0
2014-12-31 20:00:00       10.0  -22  -3.0  1034.0      NW   237.78     0     0
2014-12-31 21:00:00       10.0  -22  -3.0  1034.0      NW   242.70     0     0
2014-12-31 22:00:00        8.0  -22  -4.0  1034.0      NW   246.72     0     0
2014-12-31 23:00:00       12.0  -21  -3.0  1034.0      NW   249.85     0     0

[43800 rows x 8 columns]

根据特征dew、temp、press、wnd_dir、wnd_spd、snow、rain预测pollution

如何将有监督的Python学习问题转换成时间序列?

import pandas as pd


def series_to_supervised(data, columns, n_in=1, n_out=1, dropnan=True):
    """
    Frame a time series as a supervised learning dataset.
    Arguments:
        data: Sequence of observations as a list or NumPy array.
        n_in: Number of lag observations as input (X).
        n_out: Number of observations as output (y).
        dropnan: Boolean whether or not to drop rows with NaN values.
    Returns:
        Pandas DataFrame of series framed for supervised learning.
    """
    n_vars = 1 if type(data) is list else data.shape[1]
    df = pd.DataFrame(data)
    cols, names = list(), list()
    # input sequence (t-n, ... t-1)
    for i in range(n_in, 0, -1):
        cols.append(df.shift(i))
        names += [('%s%d(t-%d)' % (columns[j], j + 1, i)) for j in range(n_vars)]
    # forecast sequence (t, t+1, ... t+n)
    for i in range(0, n_out):
        cols.append(df.shift(-i))
        if i == 0:
            names += [('%s%d(t)' % (columns[j], j + 1)) for j in range(n_vars)]
        else:
            names += [('%s%d(t+%d)' % (columns[j], j + 1, i)) for j in range(n_vars)]
    # put it all together
    agg = pd.concat(cols, axis=1)
    agg.columns = names
    # drop rows with NaN values
    if dropnan:
        clean_agg = agg.dropna()
    return clean_agg


import numpy as np
if __name__ == '__main__':
    values = [x for x in range(10)]
    values = np.array([[25,17,20,18],[13,17,26,11],[22,26,31,19],[18,19,35,46]])
    data = series_to_supervised(values, ['temp','lr','rw','dir'], 2)

将数据处理成LSTM能输入的格式

import pandas as pd
from util import PROCESS_LEVEL1
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import OneHotEncoder
from series_to_supervised_learning import series_to_supervised
pd.options.display.expand_frame_repr = False

def data_helper():
    dataset = pd.read_csv(PROCESS_LEVEL1, header=0, index_col=0)
    print(dataset)
    dataset_columns = dataset.columns
    values = dataset.values

    # 对第四列(风向)数据进行编码,也可进行 哑编码处理
    encoder = LabelEncoder()
    values[:, 4] = encoder.fit_transform(values[:, 4])
    values = values.astype('float32')

    # 对数据进行归一化处理, valeus.shape=(, 8),inversed_transform时也需要8列
    scaler = MinMaxScaler(feature_range=(0, 1))
    scaled = scaler.fit_transform(values)

    # 将序列数据转化为监督学习数据
    reframed = series_to_supervised(scaled, dataset_columns, 1, 1)

    #print(reframed.columns[[9, 10, 11, 12, 13, 14, 15]])
    # 只考虑当前时刻(t)的前一时刻(t-1)的PM2.5值

    reframed.drop(reframed.columns[[9, 10, 11, 12, 13, 14, 15]], axis=1, inplace=True)

    values = reframed.values

    n_train_hours = 365 * 24
    train = values[:n_train_hours, :]
    test = values[n_train_hours:, :]

    # 监督学习结果划分,test_x.shape = (, 8)
    train_x, train_y = train[:, :-1], train[:, -1]
    test_x, test_y = test[:, :-1], test[:, -1]
    print(type(train_x))
    # 为了在LSTM中应用该数据,需要将其格式转化为3D format,即[Samples, timesteps, features]
    train_X = train_x.reshape((train_x.shape[0], 1, train_x.shape[1]))
    print(train_X.shape)
    test_X = test_x.reshape((test_x.shape[0], 1, test_x.shape[1]))
    return scaler,test_x,train_X,train_y,test_X,test_y

模型预测代码

全部评论

相关推荐

头像
10-13 18:10
已编辑
东南大学 C++
。收拾收拾心情下一家吧————————————————10.12更新上面不知道怎么的,每次在手机上编辑都会只有最后一行才会显示。原本不想写凉经的,太伤感情了,但过了一天想了想,凉经的拿起来好好整理,就像象棋一样,你进步最快的时候不是你赢棋的时候,而是在输棋的时候。那废话不多说,就做个复盘吧。一面:1,经典自我介绍2,项目盘问,没啥好说的,感觉问的不是很多3,八股问的比较奇怪,他会深挖性地问一些,比如,我知道MMU,那你知不知道QMMU(记得是这个,总之就是MMU前面加一个字母)4,知不知道slab内存分配器->这个我清楚5,知不知道排序算法,排序算法一般怎么用6,写一道力扣的,最长回文子串反问:1,工作内容2,工作强度3,关于友商的问题->后面这个问题问HR去了,和中兴有关,数通这个行业和友商相关的不要提,这个行业和别的行业不同,别的行业干同一行的都是竞争关系,数通这个行业的不同企业的关系比较微妙。特别细节的问题我确实不知道,但一面没挂我。接下来是我被挂的二面,先说说我挂在哪里,技术性问题我应该没啥问题,主要是一些解决问题思路上的回答,一方面是这方面我准备的不多,另一方面是这个面试写的是“专业面试二面”,但是感觉问的问题都是一些主管面/综合面才会问的问题,就是不问技术问方法论。我以前形成的思维定式就是专业面会就是会,不会就直说不会,但事实上如果问到方法论性质的问题的话得扯一下皮,不能按照上面这个模式。刚到位置上就看到面试官叹了一口气,有一些不详的预感。我是下午1点45左右面的。1,经典自我介绍2,你是怎么完成这个项目的,分成几个步骤。我大致说了一下。你有没有觉得你的步骤里面缺了一些什么,(这里已经在引导我往他想的那个方向走了),比如你一个人的能力永远是不够的,,,我们平时会有一些组内的会议来沟通我们的所思所想。。。。3,你在项目中遇到的最困难的地方在什么方面4,说一下你知道的TCP/IP协议网络模型中的网络层有关的协议......5,接着4问,你觉得现在的socket有什么样的缺点,有什么样的优化方向?6,中间手撕了一道很简单的快慢指针的问题。大概是在链表的倒数第N个位置插入一个节点。————————————————————————————————————10.13晚更新补充一下一面说的一些奇怪的概念:1,提到了RPC2,提到了fu(第四声)拷贝,我当时说我只知道零拷贝,知道mmap,然后他说mmap是其中的一种方式,然后他问我知不知道DPDK,我说不知道,他说这个是一个高性能的拷贝方式3,MMU这个前面加了一个什么字母我这里没记,别问我了4,后面还提到了LTU,VFIO,孩子真的不会。
走呀走:华子二面可能会有场景题的,是有些开放性的问题了
点赞 评论 收藏
分享
评论
点赞
收藏
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务