【机器学习笔记day22】4.2. 线性回归案例分析+波士顿房价预测

4.2. 线性回归案例分析

线性回归案例分析

波士顿房价预测

使用scikit-learn中内置的回归模型对“美国波士顿房价”数据进行预测。对于一些比赛数据,可以从kaggle官网上获取,网址:https://www.kaggle.com/datasets

1.美国波士顿地区房价数据描述

from sklearn.datasets import load_boston

boston = load_boston()

print boston.DESCR

2.波士顿地区房价数据分割

from sklearn.cross_validation import train_test_split
import numpy as np
X = boston.data
y = boston.target

X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=33,test_size = 0.25)

3.训练与测试数据标准化处理

from sklearn.preprocessing import StandardScaler
ss_X = StandardScaler()
ss_y = StandardScaler()

X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)
y_train = ss_X.fit_transform(y_train)
X_train = ss_X.transform(y_test)

4.使用最简单的线性回归模型LinearRegression和梯度下降估计SGDRegressor对房价进行预测

from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(X_train,y_train)
lr_y_predict = lr.predict(X_test)

from sklearn.linear_model import SGDRegressor
sgdr = SGDRegressor()
sgdr.fit(X_train,y_train)
sgdr_y_predict = sgdr.predict(X_test)

5.性能评测

对于不同的类别预测,我们不能苛刻的要求回归预测的数值结果要严格的与真实值相同。一般情况下,我们希望衡量预测值与真实值之间的差距。因此,可以测评函数进行评价。其中最为直观的评价指标均方误差(Mean Squared Error)MSE,因为这也是线性回归模型所要优化的目标。

MSE的计算方法如式:

{MSE=}\frac{1}{m}\sum_{i=1}{m}\left({y{i}-\bar{y}}\right)^{2}MSE=m1∑i=1m(y**iy¯)2

使用MSE评价机制对两种模型的回归性能作出评价

from sklearn.metrics import mean_squared_error

print '线性回归模型的均方误差为:',mean_squared_error(ss_y.inverse_transform(y_test),ss_y.inverse_tranform(lr_y_predict))
print '梯度下降模型的均方误差为:',mean_squared_error(ss_y.inverse_transform(y_test),ss_y.inverse_tranform(sgdr_y_predict))

通过这一比较发现,使用梯度下降估计参数的方法在性能表现上不及使用解析方法的LinearRegression,但是如果面对训练数据规模十分庞大的任务,随即梯度法不论是在分类还是回归问题上都表现的十分高效,可以在不损失过多性能的前提下,节省大量计算时间。根据Scikit-learn光网的建议,如果数据规模超过10万,推荐使用随机梯度法估计参数模型。

注意:线性回归器是最为简单、易用的回归模型。正式因为其对特征与回归目标之间的线性假设,从某种程度上说也局限了其应用范围。特别是,现实生活中的许多实例数据的各种特征与回归目标之间,绝大多数不能保证严格的线性关系。尽管如此,在不清楚特征之间关系的前提下,我们仍然可以使用线性回归模型作为大多数数据分析的基线系统。

完整代码如下:

from sklearn.linear_model import LinearRegression, SGDRegressor, Ridge
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_boston
from sklearn.cross_validation import train_test_split
from sklearn.metrics import mean_squared_error,classification_report
from sklearn.cluster import KMeans


def linearmodel():
    """ 线性回归对波士顿数据集处理 :return: None """

    # 1、加载数据集

    ld = load_boston()

    x_train,x_test,y_train,y_test = train_test_split(ld.data,ld.target,test_size=0.25)

    # 2、标准化处理

    # 特征值处理
    std_x = StandardScaler()
    x_train = std_x.fit_transform(x_train)
    x_test = std_x.transform(x_test)


    # 目标值进行处理

    std_y  = StandardScaler()
    y_train = std_y.fit_transform(y_train)
    y_test = std_y.transform(y_test)

    # 3、估计器流程

    # LinearRegression
    lr = LinearRegression()

    lr.fit(x_train,y_train)

    # print(lr.coef_)

    y_lr_predict = lr.predict(x_test)

    y_lr_predict = std_y.inverse_transform(y_lr_predict)

    print("Lr预测值:",y_lr_predict)


    # SGDRegressor
    sgd = SGDRegressor()

    sgd.fit(x_train,y_train)

    # print(sgd.coef_)

    y_sgd_predict = sgd.predict(x_test)

    y_sgd_predict = std_y.inverse_transform(y_sgd_predict)

    print("SGD预测值:",y_sgd_predict)

    # 带有正则化的岭回归

    rd = Ridge(alpha=0.01)

    rd.fit(x_train,y_train)

    y_rd_predict = rd.predict(x_test)

    y_rd_predict = std_y.inverse_transform(y_rd_predict)

    print(rd.coef_)

    # 两种模型评估结果

    print("lr的均方误差为:",mean_squared_error(std_y.inverse_transform(y_test),y_lr_predict))

    print("SGD的均方误差为:",mean_squared_error(std_y.inverse_transform(y_test),y_sgd_predict))

    print("Ridge的均方误差为:",mean_squared_error(std_y.inverse_transform(y_test),y_rd_predict))

    return None
全部评论

相关推荐

咦哟,从去年八月份开始长跑,两处实习转正都失败了,风雨飘摇,终于拿到offer了更新一下面试记录:秋招:多部门反复面试然后挂掉然后复活,具体问了啥已经忘了,只是被反复煎炸,直至焦香😋春招:base北京抖音hr打来电话说再次复活,准备面试,gogogo北京抖音一面:六道笔试题:1.promise顺序2.定义域问题3.flat展开4.并发请求5.岛屿数量算法(力扣)深度,广度都写6.忘记了,好像也是算法,难度中等其他问题多是框架底层设计,实习项目重难点~~~秒过😇北京抖音二面:三道笔试题:(为什么只有三道是因为第三道没做出来,卡住了)1.中等难度算法(忘记啥题了,应该是个数组的)2.认识js的继承本质(手写继承模式,深入js的面相对象开发)3.手写vue的响应式(卡在了watch,导致挂掉)---后知后觉是我的注册副作用函数写得有问题,有点紧张了其他题目多是项目拷打,项目亮点,对实习项目的贡献~~~第二天,挂,but立马复活转战深圳客服当天约面深圳客服一面:六道笔试题,由于面过太多次字节,面试官叫我直接写,不用讲,快些写完😋,具体都是些继承,深拷贝(注意对数组对象分开处理,深层次对象,循环引用),加中等难度算法题~~~秒过深圳客服二面:口诉八股大战:大概囊括网络,浏览器渲染原理,动画优化,时间循环,任务队列等等(你能想到的简单八股通通拉出来鞭尸😋)算法题:笔试题6道:1:找出数组内重复的数,arr[0]-arr[n]内的数大小为[1-n],例如[1,2,2,3,3]返回[2,3],要求o(n),且不使用任何额外空间(做到了o(n),空间方面欠佳,给面试官说进入下一题,做不来了)2:原滋原味的继承(所以继承真滴很重要)3:力扣股票购买时机难度中等其他滴也忘记了,因为拿到offer后鼠鼠一下子就落地了,脑子自动过滤掉可能会攻击鼠鼠的记忆😷~~~秒过深圳客服三面:项目大战参与战斗的人员有:成员1:表单封装及其底层原理,使用成本的优化,声明式表单成员2:公司内部库生命周期管理成员3:第三方库和内部库冲突如何源码断点调试并打补丁解决成员4:埋点的艺术成员5:线上项目捷报频传如何查出内鬼成员6:大文件分片的风流趣事成员7:设计模式对对碰成员8:我构建hooks应对经理的新增的小需求的故事可能项目回答的比较流利,笔试题3道,都很简单,相信大家应该都可以手拿把掐😇~~~过过过无hr面后续煎熬等待几天直接hr打电话发offer了,希望大家也可以拿到自己心仪的offer
法力无边年:牛哇,你真是准备得充分,我对你没有嫉妒,都是实打实付出
查看19道真题和解析
点赞 评论 收藏
分享
抱抱碍事梨a:三点建议,第一点是建议再做一个项目,把自我介绍部分顶了,第二点是中南大学加黑加粗,第三点是建议加v详细交流
点赞 评论 收藏
分享
评论
1
1
分享

创作者周榜

更多
牛客网
牛客企业服务