孩子们的游戏(圆圈中最后剩下的数)
孩子们的游戏(圆圈中最后剩下的数)
http://www.nowcoder.com/questionTerminal/f78a359491e64a50bce2d89cff857eb6
描述
这是一篇针对初学者的题解,共用三种方法解决。
知识点:数组,链表,递归
难度:二星
题解
题目抽象:给定一个由[0...n-1]构成的数组,第一次从0开始数m个数,然后删除,以后每次都从删除的数下一个位置开始数m个数,然后删除,直到剩余一个数字,找出那个数字。
比如:arr = [0 1 2 3 4], m = 3
第一次:删除2 ,变成 arr = [0 1 3 4]
第二次,删除0,变成 arr = [1 3 4]
第三次,删除4,变成 arr = [1 3]
第四次,删除1,变成 arr = [3]
方法一:模拟
最开始长度为n,每次删除一个数,长度变为n-1,如果用数组模拟操作的话,删除一个数据,涉及大量的数据搬移操作,所以我们可以使用链表来模拟操作。
代码如下:
class Solution { public: int LastRemaining_Solution(int n, int m) { if (n <= 0) return -1; list<int> lt; for (int i=0; i<n; ++i) lt.push_back(i); int index = 0; while (n > 1) { index = (index + m - 1) % n; auto it = lt.begin(); std::advance(it, index); // 让it向后移动index个位置 lt.erase(it); --n; } return lt.back(); } };
时间复杂度:O(N^2), 每次删除一个节点,需要先找到那个节点,然后再删除,查找的时间复杂度为O(N)
空间复杂度:O(N)
方法二:递归
假设f(n, m) 表示最终留下元素的序号。比如上例子中表示为:f(5,3) = 3
首先,长度为 n 的序列会先删除第 m % n 个元素,然后剩下一个长度为 n - 1 的序列。那么,我们可以递归地求解 f(n - 1, m),就可以知道对于剩下的 n - 1 个元素,最终会留下第几个元素,我们设答案为 x = f(n - 1, m)。
由于我们删除了第 m % n 个元素,将序列的长度变为 n - 1。当我们知道了 f(n - 1, m) 对应的答案 x 之后,我们也就可以知道,长度为 n 的序列最后一个删除的元素,应当是从 m % n 开始数的第 x 个元素。因此有 f(n, m) = (m % n + x) % n = (m + x) % n。
当n等于1时,f(1,m) = 0
代码为:
class Solution { public: int f(int n, int m) { if (n == 1) return 0; int x = f(n-1, m); return (x+m) % n; } int LastRemaining_Solution(int n, int m) { if (n <= 0) return -1; return f(n,m); } };
时间复杂度:O(N)
空间复杂度: O(N)
方法三:迭代法
根据方法二可知,
f[1] = 0
f[2] = (f{1] + m) % 2
f[3] = (f[2] + m) % 3
...
f[n] = (f[n-1] + m) % n
所以代码如下:
class Solution { public: int LastRemaining_Solution(int n, int m) { if (n <= 0) return -1; int index = 0; for (int i=2; i<=n; ++i) { index = (index + m) % i; } return index; } };
时间复杂度:O(N)
空间复杂度: O(1)