牛客小白月赛20 A 斐波那契 - BM
斐波那契
https://ac.nowcoder.com/acm/contest/3282/A
Link:斐波那契
输出描述:
在一行中输出斐波那契数列的前n项平方和模 1e9+7
示例1
输入
5
输出
40
说明
1^2+^2+2^2+3^2+5^2=40
Problem solving:
我们可以推出来一个公式,然后直接矩阵快速幂就可以了。
{% fb_img https://qn.cndrew.cn/20191221220951.png 公式 %}
但是这里我没用矩快,因为我了解到了一个更nb的算法——杜教BM
快速的解决解决线性递推求项
时间复杂度可以看这里:https://blog.csdn.net/Ike940067893/article/details/84781307
这个记着板子就好了
Code:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <map>
#include <set>
#include <cassert>
#include <iostream>
using namespace std;
#define rep(i, a, n) for (int i = a; i < n; i++)
#define per(i, a, n) for (int i = n - 1; i >= a; i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(), (x).end()
#define fi first
#define se second
#define SZ(x) ((int) (x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int, int> PII;
const ll mod = 1000000007;
ll powmod(ll a, ll b)
{
ll res = 1; a %= mod; assert(b >= 0); for (; b; b >>= 1)
{
if (b & 1)
res = res * a % mod;
a = a * a % mod;
}
return res;
}
// head
int _;
ll n;
namespace linear_seq {
const int N = 10010;
ll res[N], base[N], _c[N], _md[N];
vector<int> Md;
void mul(ll *a, ll *b, int k)
{
rep(i, 0, k + k) _c[i] = 0;
rep(i, 0, k) if (a[i])
rep(j, 0, k) _c[i + j] = (_c[i + j] + a[i] * b[j]) % mod;
for (int i = k + k - 1; i >= k; i--)
if (_c[i])
rep(j, 0, SZ(Md)) _c[i - k + Md[j]] = (_c[i - k + Md[j]] - _c[i] * _md[Md[j]]) % mod;
rep(i, 0, k) a[i] = _c[i];
}
int solve(ll n, VI a, VI b) // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
{ // printf("%d\n",SZ(b));
ll ans = 0, pnt = 0;
int k = SZ(a);
assert(SZ(a) == SZ(b));
rep(i, 0, k) _md[k - 1 - i] = -a[i]; _md[k] = 1;
Md.clear();
rep(i, 0, k) if (_md[i] != 0)
Md.push_back(i);
rep(i, 0, k) res[i] = base[i] = 0;
res[0] = 1;
while ((1ll << pnt) <= n)
pnt++;
for (int p = pnt; p >= 0; p--)
{
mul(res, res, k);
if ((n >> p) & 1)
{
for (int i = k - 1; i >= 0; i--)
res[i + 1] = res[i];
res[0] = 0;
rep(j, 0, SZ(Md)) res[Md[j]] = (res[Md[j]] - res[k] * _md[Md[j]]) % mod;
}
}
rep(i, 0, k) ans = (ans + res[i] * b[i]) % mod;
if (ans < 0)
ans += mod;
return ans;
}
VI BM(VI s)
{
VI C(1, 1), B(1, 1);
int L = 0, m = 1, b = 1;
rep(n, 0, SZ(s))
{
ll d = 0;
rep(i, 0, L + 1) d = (d + (ll) C[i] * s[n - i]) % mod;
if (d == 0)
++m;
else if (2 * L <= n)
{
VI T = C;
ll c = mod - d * powmod(b, mod - 2) % mod;
while (SZ(C) < SZ(B) + m)
C.pb(0);
rep(i, 0, SZ(B)) C[i + m] = (C[i + m] + c * B[i]) % mod;
L = n + 1 - L; B = T; b = d; m = 1;
}
else
{
ll c = mod - d * powmod(b, mod - 2) % mod;
while (SZ(C) < SZ(B) + m)
C.pb(0);
rep(i, 0, SZ(B)) C[i + m] = (C[i + m] + c * B[i]) % mod;
++m;
}
}
return C;
}
int gao(VI a, ll n)
{
VI c = BM(a);
c.erase(c.begin());
rep(i, 0, SZ(c)) c[i] = (mod - c[i]) % mod;
return solve(n, c, VI(a.begin(), a.begin() + SZ(c)));
}
};
int main()
{
scanf("%lld", &n);
long long a = linear_seq::gao(VI{ 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 }, n - 1);
long long b = linear_seq::gao(VI{ 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 }, n);
printf("%lld\n", (a * b) % mod);
} 推导过程:
{% fb_img https://qn.cndrew.cn/20191222064532.jpg 过程 %}
曼迪匹艾公司福利 95人发布
