poj1459Power Network(最大流EK算法)

题目链接:点击打开链接

文章转载自:xuanqis.com

Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= p max(u) of power, may consume an amount 0 <= c(u) <= min(s(u),c max(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= l max(u,v) of power delivered by u to v. Let Con=Σ uc(u) be the power consumed in the net. The problem is to compute the maximum value of Con.

An example is in figure 1. The label x/y of power station u shows that p(u)=x and p max(u)=y. The label x/y of consumer u shows that c(u)=x and c max(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and l max(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.

Input

There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of l max(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of p max(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of c max(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

Output

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
(3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
(0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

15
6

Hint

The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.

寻找增光路的算法

  1. 每次寻找到一条增光路
  2. 对寻找到的增光路,找到一个最大的但是又满足容量限制的minflow。就是说找出这个增光路的最小的那条边。
  3. 对于增光路的所有前向弧增加minflow,后向弧减去minflow。
  4. 一直重复前面的,直到找不到了增光路,这个时候的就是最大流。

代码

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define SIZE 210  

using namespace std;  

int map[SIZE][SIZE];  //两点间的流量 
int pre[SIZE];  
int n, np, nc, m;  
queue<int> myque;  

bool bfs(int src, int des){  //找出从源点到汇点的一个流,有则返回true,否则返回false 
    memset(pre,-1,sizeof(pre));  //pre设置为-1 
    while(!myque.empty()) myque.pop();  //清空队列 
    pre[src]=0;  //源点的前缀为0 
    int index;  
    myque.push(src);  
    while(!myque.empty()){  //队列如果空了,说明没有从源点到汇点的流 
        index = myque.front();  
        myque.pop();  
        for(int i=0;i<=1+n;i++){  //对于n+1的点,看看有没有可走到且没走过的点 
            if(pre[i] == -1 && map[index][i] > 0){
                pre[i]=index;  
                if(i == des) return true;  //如果走到汇点,那么就已经找到了可行的流 
                myque.push(i);   
            } 
        }
    }
    return false;  //没有流了 
}

int MaxFlow(int src, int des){
    int maxflow=0;  
    while(bfs(src,des)){  //没有流,就已经是最大流了 
        int minflow = (1<<30);  //设置为无穷大 
        int i;  
        for(i=des;i!=src;i=pre[i]){  //找出那条流,并且算出这条流中最小的瓶颈 
            minflow=min(minflow,map[pre[i]][i]);  
        }
        for(i=des;i!=src;i=pre[i]){  //对于这条流,构***向边,正向边减多少,反向边加多少 
            map[pre[i]][i] -= minflow;  
            map[i][pre[i]] += minflow;  
        }
        maxflow += minflow;  //最大流加上这个流的流量 
    }
    return maxflow;  //返回去 
}

int main(){
    int src, des;  //定义起点终点 
    int u, v, w;  //临时变量,可分别作为边的起点终点权值 
    char ss[30];  //作为输入数据所用,因为有空格 
    while(~scanf("%d%d%d%d", &n, &np, &nc, &m)){  //输入点数 发电站数 消耗站数 边数 
        memset(map, 0, sizeof(map));  //设置为0 
        src = n;  //以n作为超级源点 
        des = n+1;  //以n+1作为超级汇点 
        for(int i=0;i<m;i++){  //输入边和最大传输量 
            scanf("%s",ss);  
            sscanf(ss,"(%d,%d)%d", &u, &v, &w);  
            map[u][v]=w;  //单向 
        }
        for(int i=0;i<np;i++){  //输入发电站,超级源点到发电站的传输量就设置为发电站的电量 
            scanf("%s", ss);  
            sscanf(ss, "(%d)%d", &v, &w);  
            map[src][v]=w;  //从超级源点到发电站 
        }
        for(int i=0;i<nc;i++){  //输入耗电站,耗电站到超级汇点的传输量就设置为耗电站的电量 
            scanf("%s",ss);  
            sscanf(ss,"(%d)%d", &u, &w);  
            map[u][des]=w;  //耗电站到超级汇点 
        }
        printf("%d\n",MaxFlow(src,des));  //算出从超级源点到超级汇点的最大流 
    }
    return 0;  
} 

全部评论

相关推荐

02-07 12:06
已编辑
华侨大学 测试开发
最近看到很多&nbsp;92&nbsp;的,甚至是硕士,开始往测开赛道卷,说实话有点看不懂。先把话说清楚,大厂里的测开,绝大多数时间干的还是测试的活,只是写点自动化脚本、维护测试平台、接接流水线,真正像开发一样做系统、做架构、做核心平台的测开少得可怜,基本都集中在核心提效组,而且人很少,外面进去的大概率轮不到你,我想真正干过人都清楚。很多人被洗脑了,以为测开也是开,和后端差不多,只是更简单、更轻松、还高薪。现实情况是,测开和开发的职业路径完全不一样。开发的核心是业务和系统能力,测开的核心是稳定性和覆盖率,前者是往上走,后者天花板非常明显。你可以见到很多开发转测开,但你很少见到干了几年测开还能顺利转回开发的。更现实一点说,92&nbsp;的高学历如果拿来做测开,大部分时间就是在做重复性很强的杂活,这种工作对个人能力的放大效应非常弱。三年下来,你和一个双非的,甚至本科的测开差距不会太大,但你和同龄的后端、平台开发差距会非常明显。这不是努不努力的问题,是赛道问题。所谓测开简单高薪,本质上是把极少数核心测开的上限,当成了整个岗位的常态来宣传。那些工资高、技术强的测开,本身就是开发水平,只是挂了个测开的名。普通人进去,99%&nbsp;做的都是项目兜底型工作,而不是你想象中的平台开发。测开不是不能做,但它绝对不是开发的平替,也不是性价比最优解。如果你是真的不想做开发,追求稳定,那测开没问题。但如果你只是觉得测开比后端容易,还能进大厂,那我劝你冷静一点,这只是在用短期安全感换长期天花板。有92的学历,如果你连测开这些重复性工作都能心甘情愿接受,那你把时间精力用在真正的开发、系统、业务深度上,回报大概率比卷测开要高得多。想清楚再下场,别被岗位名和话术带偏了,就算去个前端客户端也是随便占坑的,测开是一个坑位很少赛道,反而大面积学历下放,不用想也能知道会是什么结果,我想各位在JAVA那里已经看到了
小浪_Coding:工作只是谋生的手段 而不是相互比较和歧视
点赞 评论 收藏
分享
评论
点赞
收藏
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务