吴恩达 神经网络与深度学习 第一课第四周课后作业 4-1

Building your Deep Neural Network

1.初始化参数
W1,b1,W2,b2
2. forward propagation
Z[l]=W[l]A[l−1]+b[l]
where A[0]=X
3. 计算activation functio
sigmoid/relu
A[l]=g(Z[l])=g(W[l]A[l−1]+b[l])
output (A,cache)
其中cache 包括w1,b1…
4. 实现FP

AL, cache = linear_activation_forward(A,parameters['W'+str(L)],parameters['b'+str(L)],activation = "sigmoid")
    caches.append(cache)

5.计算 cost function
−1m∑i=1m(y(i)log(aL)+(1−y(i))log(1−aL))
np.dot不支持交换律
6.实现back propagation(以下的实现逻辑应该是倒着来的)

  • 取dZ,W,b 求dW,db,dA
  • 取dA,activation_cache求dZ,sigmoid/relu dZ[l]=dA[l]∗g′(Z[l])
  • 取AL,Y,caches 求dA
dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) 

7.计算梯度grads
grads[“dW”+str(l)]=dW[l]

8.更新参数
W[l]=W[l]−α dW[l]
b[l]=b[l]−α db[l]

全部评论

相关推荐

05-11 11:48
河南大学 Java
程序员牛肉:我是26届的双非。目前有两段实习经历,大三上去的美团,现在来字节了,做的是国际电商的营销业务。希望我的经历对你有用。 1.好好做你的CSDN,最好是直接转微信公众号。因为这本质上是一个很好的展示自己技术热情的证据。我当时也是烂大街项目(网盘+鱼皮的一个项目)+零实习去面试美团,但是当时我的CSDN阅读量超百万,微信公众号阅读量40万。面试的时候面试官就告诉我说觉得我对技术挺有激情的。可以看看我主页的美团面试面经。 因此花点时间好好做这个知识分享,最好是单拉出来搞一个板块。各大公司都极其看中知识落地的能力。 可以看看我的简历对于博客的描述。这个帖子里面有:https://www.nowcoder.com/discuss/745348200596324352?sourceSSR=users 2.实习经历有一些东西删除了,目前看来你的产出其实很少。有些内容其实很扯淡,最好不要保留。有一些点你可能觉得很牛逼,但是面试官眼里是减分的。 你还能负责数据库表的设计?这个公司得垃圾成啥样子,才能让一个实习生介入数据库表的设计,不要写这种东西。 一个公司的财务审批系统应该是很稳定的吧?为什么你去了才有RBAC权限设计?那这个公司之前是怎么处理权限分离的?这些东西看着都有点扯淡了。 还有就是使用Redis实现轻量级的消息队列?那为什么这一块不使用专业的MQ呢?为什么要使用redis,这些一定要清楚, 就目前看来,其实你的这个实习技术还不错。不要太焦虑。就是有一些内容有点虚了。可以考虑从PR中再投一点产出
点赞 评论 收藏
分享
评论
点赞
收藏
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务