P4014 分配问题 【网络流24题 最小/大费用最大流】
传送门
废话:应该是一道最大流最小费用流的模板题
解题思路:在保证每个人都有工作的条件下获得的收益最大和最小。收益最小:费用流模板。收益最大:将收益取反,跑一遍板子,答案就等于最小费用取反。
一个超级源点 - > 每一个人 (流上限均为1,费用为0)
人->工作 (流上限为1,费用(最小收益为 Cij,最大收益为 -Cij ))
工作->超级汇点(流上限为1,费用为0)
代码:
///#include<bits/stdc++.h>
///#include<unordered_map>
///#include<unordered_set>
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<queue>
#include<bitset>
#include<set>
#include<stack>
#include<map>
#include<list>
#include<new>
#include<vector>
#define MT(a, b) memset(a,b,sizeof(a)
#define lowbit(x) (x&(-x))
using namespace std;
typedef long long ll;
const double pai = acos(-1.0);
const double E = 2.718281828459;
const ll mod = 1e9 + 7;
const int INF = 0x3f3f3f3f;
const double esp = 1e-6;
const int maxn = 5e2 + 5;
int n, Sta, End;
int inque[maxn], dis[maxn], pre[maxn], flow[maxn];
int maps[105][105];
struct node {
int e, c, f, p;
} load[maxn * 100];
int head[maxn], sign;
void add_edge(int s, int e, int c, int f) {
load[++sign] = node{e, c, f, head[s]};
head[s] = sign;
}
bool spfa() {
for (int i = 0; i <= n * 2 + 1; i++) {
inque[i] = 0;
flow[i] = dis[i] = INF;
pre[i] = -1;
}
inque[Sta] = 1, dis[Sta] = 0;
queue<int> q;
q.push(Sta);
while (!q.empty()) {
int s = q.front();
q.pop();
inque[s] = 0;
for (int i = head[s], e, c, f; ~i; i = load[i].p) {
e = load[i].e, c = load[i].c, f = load[i].f;
if (f > 0 && dis[e] > dis[s] + c) {
dis[e] = dis[s] + c;
flow[e] = min(flow[s], f);
pre[e] = i;
if (!inque[e]) {
inque[e] = 1;
q.push(e);
}
}
}
}
return dis[End] != INF;
}
void init() {
sign = -1;
memset(head, -1, sizeof(head));
}
int main() {
init();
int minans = 0, maxans = 0;
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++)
scanf("%d", &maps[i][j]);
}
Sta = 0, End = n * 2 + 1;
///求最小收入
for (int i = 1; i <= n; i++) {
add_edge(0, i, 0, 1);
add_edge(i, 0, 0, 0);
for (int j = 1; j <= n; j++) {
add_edge(i, n + j, maps[i][j], 1);
add_edge(n + j, i, -maps[i][j], 0);
}
add_edge(n + i, End, 0, 1);
add_edge(End, n + i, 0, 0);
}
while (spfa()) {
int f = flow[End];
for (int i = pre[End]; i!=-1; i = pre[load[i ^ 1].e]) {
minans += f * load[i].c;
load[i].f -= f;
load[i ^ 1].f += f;
}
}
///最大收入
init();
for (int i = 1; i <= n; i++) {
add_edge(0, i, 0, 1);
add_edge(i, 0, 0, 0);
for (int j = 1; j <= n; j++) {
add_edge(i, n + j, -maps[i][j] ,1);
add_edge(n + j, i, maps[i][j] ,0);
}
}
for (int j = 1; j <= n; j++) {
add_edge(n + j, End, 0, 1);
add_edge(End, n + j, 0, 0);
}
while (spfa()) {
int f = flow[End];
for (int i = pre[End]; i!=-1; i = pre[load[i ^ 1].e]) {
maxans += f * load[i].c;
load[i].f -= f;
load[i ^ 1].f += f;
}
}
printf("%d\n%d\n", minans, -maxans);
}