import numpy as np def gauss_seidel(A, b, n, x_ini=None): x = x_ini or np.zeros_like(b) row, col =np.shape(A) for _ in range(n): for i in range(row): x_new = b[i] for j in range(col): if i < j: x_new -= A[i, j] * x[j] x[i] = x_new/A[i, i] if i > j: x_new -= A[i, j] * x[j] x[i] = x_new/A[i, i] ...