明天不下雨了 level
获赞
1409
粉丝
324
关注
187
看过 TA
9810
广东药科大学
2026
后端
IP属地:湖南
26届
私信
关注
天天向上的风:那如果还有论文的话阁下又要如何应对
0 点赞 评论 收藏
分享
0 点赞 评论 收藏
分享
@浮生晴空:
最近是各位大佬离职回去准备秋招了嘛,鼠鼠最近投的实习居然都有回应了,基本上当天投的两天之内都能有回应,要是秋招能有这样就太好了呜呜,简单记录一下吧。7月23日:快手-平台消费(一面)1.实习介绍(干了什么,亮点,难点)2.一些基础八股(集合,MySQL……)3算法(二叉树前序遍历非递归),突然忘了要求换了个,直接给我出了个反转链表(面试官真好) 50minute7月25日:百度-后台开发(一面)1.介绍实习(针对简历上写的亮点挨个问)(这么玩嘛)2八股拷打,不断反问3先写个算法吧(二叉树最长路径长度)4问项目(简单介绍了下) 1h7月25日:快手-平台消费(二面)1.谈了下实习时间,到岗时间啥的2.操作系统(线程进程区别,通信方式,使用细节)3Java八股,jvm,集合……4算法(倒数第k个最大元素)50分钟7月28日: 小红书-数据库平台开发(一面)1.介绍实习(为啥要这样做,达到的效果咋样……)2.八股文(记不太清了)3.介绍项目,(详细介绍了一遍)4算法(长度最小子数组,两数相加)50分钟7月28日: 字节跳动-生活服务(一面)1.介绍实习(介绍部门组内情况,你怎么优化的,之前是咋样的呢,怎么保证不会出现问题……汗流浃背了)2.按照简历上的点穿插八股文,Redis底层数据结构实现,集群方案,切片集群,如何扩容,Redis分布式锁……,给出了两个sql问有什么问题,给出优化方案并写出来,有一个是深分页问题3.算法(子集2)1小时10分钟7月29日: 小红书-二面-数据库平台开发(二面)1.算法(最长递增子序列,二叉树展开为链表)2.计网,操作系统3Java八股文4实习介绍50分钟然后7月31还有个猫眼娱乐-后台开发(一面)
点赞 11
评论 13
0 点赞 评论 收藏
分享
有担当的灰太狼又在摸...:你怎么这么多吊图,求发我个原图
0 点赞 评论 收藏
分享
07-23 18:55
已编辑
广东药科大学 后端
0 点赞 评论 收藏
分享
0 点赞 评论 收藏
分享
冰激凌好吃:谁知盘中餐,谁都不一般😗
0 点赞 评论 收藏
分享
07-12 22:24
已编辑
广东药科大学 后端
实在是不想学了 写个文章吧.....希望大家消除对云智的误解 无所谓内包外包 这里做的业务跟总部都是一样的明白吗?都是一样的只是钱多钱少 竞争力和内卷不大的问题以及有没有产出 做的是不是杂活跟组有关系 不跟内包有关系我来这里实习是有培养计划的 我觉得导师和leader对我还是比较看重经常跟我聊进度 让我不会的快点问 快点学习和成长我一个月预答辩了两次 入职一个月预答辩两次......我导师也是对我很好 跟我说我做的工作如果说没有什么产出就不用写了意思就是那些CRUD的杂活对于我答辩没有什么用的就不用给我写了分给我需求 让我的导师给我做方案设计一个方案设计争取做完去上线另外一个方案即使写不完也要明白业务逻辑到时候好答辩 这样才有产出同时我的导师也跟我说他理解我广东人想回去的心情 即使想回去也没有关系~而且部门的同事们都非常热情 非常~很多入职一两年的大佬们每天都会跟我们一起吃饭其他的都是有点上年纪的就会自己吃饭盒 应该是在家里做的 然后放到盒子保温和同事一起吃饭真的是加快感情升温的方式 有一个校招一年的已经混到负责人了然后我就每天问他问题 能学到很多我的左右两边每天对我都是笑嘻嘻的 很温暖的同事们说到业务 部门还是比较核心的 一个部门吃完饭回来都在加班表面说早10晚6 实际上我左右两边后面都是九点左右走的 我的导师走的早一点leader都是十点左右走
receive177...:实习可以,奔着转正还是别去外包了
0 点赞 评论 收藏
分享
0 点赞 评论 收藏
分享
1. 什么是MCP参考面试回答:MCP模型上下文协议)是为大型语言模型提供的一个统一标准化接口、让AI能够无缝连接各种外部数据源和工具。可以将它比作AI世界的USB接口—只要遵循这个协议标准、任何数据源或工具都能与语言模型实现即插即用比如说传统的AI只能依赖预训练的静态知识、无法获取实时数据。而通过MCP,模型可以动态访问最新信息、比如查询搜索引擎、读取本地文件、调用第三方API、甚至直接操作各种工具库。比如说可以访问Github、IDEA这个协议最大的价值是标准化、它是MCP的核心价值 - 你不需要为每个AI模型和每个工具之间的连接编写专门的代码、只要双方都支持MCP协议、它们就能自动"对话"。这大大简化了系统集成、降低了开发成本、也提高了系统的可扩展性总结就是 MCP 创建一个通用标准、使 AI 应用程序的开发和集成变得更加简单和统一2. 大模型输出出现重复和幻觉如何解决参考面试回答:在大模型生成内容时、出现重复和幻觉是两个常见的问题。重复指的是模型在生成文本时出现内容重复的现象、而幻觉则是指模型生成了看似合理但实际上不真实或不准确的信息。为了解决这两个问题、可以通过微调(fine-tuning)的方法进行优化为了解决这些问题、首先微调是非常有效的手段。首先可以确保用于训练的数据质量、要高质量的真实的信息。我们可以减少模型学到错误的信息。特别是领域特定的微调、能帮助模型更准确地生成内容,避免在特定领域(比如医疗、金融)中产生幻觉。此外在训练过程中引入惩罚机制、比如对模型生成重复或不准确内容进行惩罚、也能够引导模型生成更为多样和真实的内容。另一个有效的策略是使用参数高效微调(PEFT)、通过像LoRA这样的技术、在不改变模型主体结构的情况下调整部分参数、从而提高微调效率并减少幻觉的产生。同时强化学习与人类反馈(RLHF)也是一种非常有用的方法、结合人类的评价、模型可以在生成内容时更符合实际世界的逻辑,降低幻觉的风险。最后检索增强生成(RAG)技术也能够显著提高模型输出的准确性、通过在生成过程中引入外部知识库、确保模型生成的信息更为真实和可靠。总的来说:通过微调、引入惩罚机制、领域特定训练和强化学习等方法、可以有效减少大模型的重复和幻觉问题3. 什么是RAG?流程是什么?面试参考回答:RAG就是结合信息检索和生成式模型的技术。主要流程包括两个核心环节:检索:基于用户的输入、从外部知识库(如数据库、文档、网页)检索与问题相关的信息。通常使用向量化表示和向量数据库进行语义匹配。将知识库中的文档进行预处理、分块、清洗并转换为向量表示、存储在向量数据库中。常用的如 Faiss、Milvus等向量数据库存储所有文档向量。用户提问后、对问题进行向量化、并在数据库中执行最近邻搜索、找出语义最相近的 N 条内容然后就是增强:也可以说是构建 Prompt1.将检索到的信息作为上下文、输入给生成模型(如 GPT)。2.相比纯生成模型、RAG 能引用真实数据、减少幻觉(胡编乱造)最后就是由将增强后的上下文输入到大型语言模型、综合已有上下文生成最终生成最终的回答或内容。一句话总结: RAG = 向量搜索引擎 + 大模型、让 AI 回答更靠谱、减少幻觉4. RAG的详细完整的工作流程参考面试回答流程:RAG(检索增强生成)的完整流程可分为5个核心阶段:1. 用户提问2. 数据准备:清洗文档、分块处理(如PDF转文本切片)2. 向量化:使用嵌入模型(如BERT、BGE)将文本转为向量。也就是Embedding 向量化3. 索引存储:向量存入数据库(如Milvus、Faiss、Elasticsearch)。4. 检索增强:用户提问向量化后检索相关文档。也就是构建 Prompt (问题 + 检索内容)5. 生成答案:将检索结果与问题组合输入大模型生成回答。5. 在 RAG 中的 Embedding 嵌入是什么参考面试回答:Embedding是RAG系统的核心组件、Embedding(嵌入)技术本质上是将文本、图像等非结构化数据转换为高维向量的过程。在实际应用中Embedding解决了传统关键词检索的局限性。比如用户询问如何煮奶茶时、传统检索可能无法找到包含'奶茶制作步骤'的文档、因为它们字面上不匹配。而通过Embedding、系统能够理解这两个表达在语义上的相似性、从而返回相关内容。Embedding的工作原理是通过深度学习模型(如BERT、Sentence-Transformers等)将文本映射到768维或更高的向量空间。在RAG系统中、Embedding的核心价值在于建立查询和文档之间的语义桥梁。当系统收到用户问题后、会将其转化为向量、然后在预先索引的文档向量库中寻找最相似的内容、无论它们在字面表达上是否匹配。这种基于语义的检索方式大幅提升了信息获取的准确性和完整性、为生成模型提供了更高质量的上下文信息,从而产生更精准的回答6. 什么是LangChain参考面试回答:LangChain 是一个开源框架、专为快速构建复杂的大语言模型应用而设计。简单来说就是它集成和内置了很多我们开发 AI 大模型应用需要的东西、如内置文档加载器、向量数据库、HTTP API 封装、云服务适配器等、让咱们开箱即用、有点像咱们 Java 届的 Spring。它最大的特点是把模型调用、提示词管理、工具使用、记忆管理这些能力模块化了、让开发者可以很方便地把大模型和数据库、搜索引擎、API服务等结合起来,用链式结构组织复杂任务。主要支持复杂任务编排:通过 Chains(链)和 Agents(代理)将多个LLM调用和工具操作组合成工作流以及实现上下文管理Memory(记忆):通过 Memory 组件(如对话历史缓存、实体关系跟踪)实现长对话连贯性。6. 什么是向量数据库参考面试回答:我的理解是:向量数据库它可以将非结构化数据(如文本、图片、音频等)转换成高维向量的形式进行存储、通过向量数据库预先存储结构化段、实时检索最相关的 Top-K 内容作为上下文输入、并通过高效的相似性搜索算法、快速找到与目标向量最接近的数据项。传统数据库采用存储数据、主要用于精确匹配查询、常用的检索方式就是精确匹配、索引结构有像B+树或者倒排索引的结构。而向量数据库针对高维向量数据优化、支持近似最近邻(ANN)搜索算法、更适合语义相似性搜索。可以理解为TopN系列、检索TopK相关内容作为上下文输入。向量数据库预先向量化并建立索引(如 HNSW、IVF),实现亚秒级检索。代表性的向量数据库就是Milvus:一个开源的向量数据库系统8. 向量数据库的核心原理是什么?核心技术是什么参考面试回答:向量数据库的核心原理是通过将高维数据(如图像、文本)转换为多维向量、并基于相似性度量(如余弦相似度、欧氏距离),利用高效的索引结构和近似最近邻(ANN)算法、快速检索与目标最相似的向量结果。这一过程可概括为三个关键步骤:首先是向量化:我们通过嵌入模型将非结构化数据映射为稠密向量、比如用BERT处理文本、ResNet处理图像、或CLIP处理多模态数据。这些模型能捕获数据的语义或特征信息、通常生成128到2048维的向量其次是索引构建:为了高效检索、我们会采用分层导航小世界图(HNSW)等结构预处理向量。HNSW能将搜索复杂度降至对数级O(log N)。同时我们还会利用乘积量化(PQ)来压缩向量、减少内存占用、以及通过倒排索引(IVF)缩小搜索范围。最后是近似搜索:在实际应用中我们允许一定误差来提升速度。ANN算法会在准确性和效率间寻找平衡点、确保在毫秒级延迟内返回Top-K相似结果、同时保持95%以上的召回率。总的来说就四个核心层:向量化引擎->索引结构 ->相似度计算->搜索原始数据 → 向量化 → 索引构建(HNSW/PQ/LSH) → 输入查询向量 → ANN近似搜索 → 返回Top-K结果(格式明天再改吧___发帖于2025.6.25 00:47)
明天不下雨了:兄弟们给个花花我是网络乞丐
0 点赞 评论 收藏
分享

创作者周榜

更多
关注他的用户也关注了:
牛客网
牛客网在线编程
牛客网题解
牛客企业服务