原题解链接:https://ac.nowcoder.com/discuss/150009 这里介绍一种可行的构造方法。首先在点(n,1)(n,1)(n,1)与(n−3,0)(n-3,0)(n−3,0)之间连一条线,之后依次连接(n,min(1+2k,n))(n, min(1 + 2k,n))(n,min(1+2k,n))与(max(n−3−2k,0),0),(k∈Z,k>0)(max(n-3- 2k,0),0), (k∈Z,k>0)(max(n−3−2k,0),0),(k∈Z,k>0)直至1+2k≥n1+2k≥n1+2k≥n并且n−3−2k≤0n-3-2k≤0n−3−2k≤0...