最小生成树及其性质 最小生成树是在一个给定的无向图中求一棵树T,使得这棵树拥有图G中的所有顶点,且所有的边均是来自图G中的边,并且满足整棵树的边权之和最小。 性质:最小生成树是树,因此其边数等于顶点数减一,且树内没有环;对于一个给定的图,最小生成树可以不唯一,但其边权之和一定是唯一的;由于最小生成树是在无向图中生成的,因此其根结点可以是这棵树上的任意点。 最小生成树的求解 一般有prim算法和kruskal算法,均是贪心的思想,不过贪心策略不大一样。 Prim算法 基本思想是对图G(V,E)设置集合S来存放已被访问的顶点,然后执行n次下面两个步骤(n为顶点数目): 每次从集合V-...