首页
题库
公司真题
专项练习
面试题库
在线编程
面试
面试经验
AI 模拟面试
简历
求职
学习
基础学习课
实战项目课
求职辅导课
专栏&文章
竞赛
我要招人
发布职位
发布职位、邀约牛人
更多企业解决方案
AI面试、笔试、校招、雇品
HR免费试用AI面试
最新面试提效必备
登录
/
注册
喜欢疯狂星期四的小蜗牛等一个offer
获赞
1
粉丝
1
关注
6
看过 TA
5
郑州大学
2026
Java
IP属地:河南
暂未填写个人简介
私信
关注
拉黑
举报
举报
确定要拉黑喜欢疯狂星期四的小蜗牛等一个offer吗?
发布(10)
评论
刷题
收藏
喜欢疯狂星期四的小蜗牛等一个offer
关注TA,不错过内容更新
关注
2022-03-29 09:09
已编辑
郑州大学 Java
取模 数论分块
思路:首先化简一下该式子,原式=sum(n-n/i*i) = n*n-sum(n/i*i); 由数论分块可知,对于n/i而言,在0-n内一定存在一块连续的区间 l - r 在这段区间内 n/i 的值是相同的, 那么在这段区间内sum(n/i*i) = n/i * sum(i);就相当于求 l - r 的区间和 即(r + l) * (r - l + 1) / 2; 因此问题就变成了求每一段区间 l 和 r; 而每一段的 l 等于上一段的 r + 1,r = n / ( n / l);
0
点赞
评论
收藏
分享
2022-03-24 19:00
郑州大学 Java
01背包题
解题思路:对于某些附件,他们依赖与主件,所以对于某个主件来说,把它的所有附件先找出来,之后最外层for循环直接枚举每一个主件,对于主件的附件在利用一个01背包进行解题。 所以状态定义为:dp[i][j][k] 表示在前n个主件中,j为0表示不选该主件,钱数为k时的最优解,j为1表示选该主件的情况下,钱数为k时的最优解。 状态转移方程为:dp[i][0][k] = max(dp[i-1][0][k], dp[i-1][1][k]); dp[i][1][k] = 再利用一个01背包求解。
0
点赞
评论
收藏
分享
2022-03-23 15:14
郑州大学 Java
线性DP
易错点: 1,第一个物品要进行单独判断 2,直接开始选第二个物品,所以从k+1开始循环
0
点赞
评论
收藏
分享
2022-03-20 22:10
郑州大学 Java
DP的优化
O(n^3)思路: 先求出t和c的前缀和sumt, sumc dp[i][j]表示前i个任务分成j批的最小代价,这样我们算的可以知道这是第几批,同时枚举第j批和第j-1批的分界点找到最小代价的。状态转移方程: dp[i][j] = min{dp[k][j-1] + (sj+sumt[i])(sumc[i]-sum[k])}; 0 <= k < i 前k个任务分了j-1批,k+1 ~ i分成了一批。 时间复杂度较高。 O(n^2)思路: 还是先求前缀和 dp[i]表示前i个任务分成若干批的最小代价,与前一种方法相比,我们不关心这是第几批,在每次分批的时候把对后面所有任务造成的影响加上...
0
点赞
评论
收藏
分享
2022-03-18 21:34
郑州大学 Java
区间DP
目的是占领1-n这n个点,可以发现当我们占领一个点之后,相当于把一个区间从这个点分成了两个区间,因此我们就需要知道某一个区间的子区间的情况,就想到了这是一道动态规划题目,而且是一道不太难的区间dp。 实现:按长度从小到大枚举每一个区间,之后再枚举先占领区间内的哪个点,取最小值即可。
0
点赞
评论
收藏
分享
2022-03-17 21:40
郑州大学 Java
并查集
几乎是一道裸的并查集,但是当时一直没看出来。 思路:把一个部门的人都merge一下就行了,x所在的集合就是x所感染的人了。 还是对并查集掌握不熟练。
0
点赞
评论
收藏
分享
2022-03-17 20:31
郑州大学 Java
二分求函数最值
思路:先求导,注意变量的取值范围,x是0~100的,y是大于0的,所以一定有一个点的导数为零,不难理解这个点其实就是最小值。对导数二分即可。
0
点赞
评论
收藏
分享
2022-03-06 10:05
郑州大学 Java
寒假训练营 寒冬信使 博弈论
解题思路: 对于先手 对一个状态而言,如果一步能到达的状态里面有一个是必败态,那么该状态就是必胜态了。反之,如果一步能到达的状态里全是必胜态,那么该状态就是必败态。 实现: 利用二级制,把白色格子记为1,黑色格子记为0,进行压缩,然后枚举。 1,开一个2^11次方的数组,f[x] = 1表示x状态必胜,反之必败。 2,如何进行枚举:利用下一步肯定比这一步小这个性质,直接从小到大枚举。 容易想到0肯定是必败态,那么从1开始枚举,首先如果是奇数(即第一个格子是白色)先特判,之后对1的位置进行枚举就行。
0
点赞
评论
收藏
分享
2022-03-05 08:56
已编辑
郑州大学 Java
树形DP
跟线性dp里的最大子串和有点相似。 不用去遍历每一个节点,对每一个节点都去dfs, 只需要选择某个节点遍历一次就行了,在函数返回的时候进行答案的更新,不然会超时。
0
点赞
评论
收藏
分享
2022-03-06 10:06
已编辑
郑州大学 Java
DP 取模
分析:令dp[i][j]表示前i个数在模3等于j的情况下的方案数, 对于某一个i而言i乘0和i乘3和i乘6和...一直到i乘(cnti/3),这些数模3的值是一样的,所以不必遍历cnti次,只需要计算三次就行。同理对于i1,i4,i7.....和i2,i5,i8.....
0
点赞
评论
收藏
分享
1
创作者周榜
更多
关注他的用户也关注了:
牛客网
牛客企业服务