选择两个元素,一个加 1,另一个减 1。
小美希望若干次操作后,众数的出现次数尽可能多。你能帮她求出最小的操作次数吗?
众数定义:在一组数据中,出现次数最多的数据,是一组数据中的原数据,而不是相应的次数。 一组数据中的众数不止一个,如数据2、3、-1、2、1、3中,2、3都出现了两次,它们都是这组数据中的众数。
第一行为一个正整数,代表数组的大小。
第二行输入个正整数
,代表小美拿到的数组。
一个整数,代表最小的操作次数。
3 1 4 4
2
第一次操作:第一个数加 1,第二个数减 1。第二次操作:第一个数加 1,第三个数减 1。数组变成[3,3,3],众数出现了 3 次。
3 1 5 5
0
众数出现了 2 次,由于无法再用操作使得众数出现的次数变得更多,所以无需操作。
这题分两种情况,一是可以整出众数为n,不能整除众数为n-1,需要计算最小次数
需要注意,讨论n-1的情况时,根据贪心思想删去最小或最大值,但是要求最优解要考虑减去后的sum/(n-1)的ceil和floor
注意:ceil 时,剩余总和不足,需要补差值,这个差值就是额外操作次数;floor 时,总和已经足够,不需要补
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int INF = 0x3f3f3f3f3f3f3f3f;
//-1 1 2 2 3 3
//1 1 2 2 3 3
void solve() {
int n;
cin>>n;
vector<int>arr(n+1);
int sum=0,mx=-1e18,mn=INF;
for(int i=1;i<=n;i++){
cin>>arr[i];
sum+=arr[i];
mx=max(mx,arr[i]);
mn=min(mn,arr[i]);
}
int ans=0;
if(sum%n==0){
int sum1=0;
int t=sum/n;
for(int i=1;i<=n;i++){
if(arr[i]>t) sum1+=arr[i]-t;
}
ans=sum1;
}
else{
int sum1=sum,sum2=sum,res1=0,res2=0,res3=0,res4=0;
sum1-=mx,sum2-=mn;
int t1=sum1/(n-1),t2=sum2/(n-1),t3=(sum1+n-2)/(n-1),t4=(sum2+n-2)/(n-1);
int d1=(n-1)-(sum1%(n-1)),d2=(n-1)-(sum2%(n-1));
sort(arr.begin()+1,arr.end());
for(int i=1;i<n;i++){
if(arr[i]>t1) res1+=arr[i]-t1;
if(arr[i]>t3) res3+=arr[i]-t3;
}
for(int i=2;i<=n;i++){
if(arr[i]>t2) res2+=arr[i]-t2;
if(arr[i]>t4) res4+=arr[i]-t4;
}
ans=min(res1,min(res2,min(res3+d1,res4+d2)));
}
cout<<ans;
}
signed main() {
std::ios_base::sync_with_stdio(false);
std::cin.tie(nullptr);
int t = 1;
// cin>>t;
while (t--) {
solve();
}
return 0;
}