我们将使用拉马努金瞪眼法解决这一题
注意到,这个题显然要用高精度,然后枚举b的质因子,判断是否整除a
但是真的需要高精度吗?显然不需要,易证:使用py
于是tle了,还好我技高一筹
那到底要怎么做呢?
显然可得,每日签到题肯定不是敲高精度赤石的
手玩发现,肯定跟数学有关,我们注意到,gcd的公式
只要先对a取模,变得比b还小,不就可以丢进gcd里面算了?
使用瞪眼法可得,可以对a的每一位单独取模,最后再加起来,就可以不用敲高精度了。
真是很妙的想法!
注意到,代码要写成这样
#include<iostream>
#include<algorithm>
#include<string>
#include<vector>
#include<cmath>
#include<map>
#include<set>
#include<queue>
#include<stdio.h>
#include<stack>
#include<list>
#include<tuple>
#include<ctime>
#include<cstdlib>
#include<sys/timeb.h>
using namespace std;
#define ffp(x,y,z) for(ll (x) = (y);(x)<=(z);(x++))
#define ffs(x,y,z) for(ll (x) = (y);(x)>=(z);(x--))
#define pii pair<ll ,ll>
#define ll long long int
#define q_ (qd())
const double ex = 1e-7;
const int iINF = 0x3f3f3f3f;
const ll lINF = 0x3f3f3f3f3f3f3f3f;
const ll MOD = 1000000007;
long long int qd() {
long long w = 1, c, ret;
while ((c = getchar()) > '9' || c < '0')
w = (c == '-' ? -1 : 1); ret = c - '0';
while ((c = getchar()) >= '0' && c <= '9')
ret = ret * 10 + c - '0';
return ret * w;
}
int stime()
{
timeb ti;
static bool f = 1;
ftime(&ti);
while (1)
{
if (f) { srand(ti.millitm * 117); f = 0; }
int temp = rand();
if (temp) { return temp > 0 ? temp : -temp; }
}
}
ll gcd(ll a, ll b)
{
if (a == 0)return b;
return a % b == 0 ? b : gcd(b, a % b);
}
ll qs(ll a, ll b)
{
ll bei = a;
a = 1;
while (b)
{
if (b & 1) { a = a * bei % MOD; }
bei = bei * bei % MOD;
b >>= 1;
}
return a;
}
ll inv(ll a)
{
return qs(a, MOD - 2);
}
static ll Max(ll a1 = -lINF, ll a2 = -lINF, ll a3 = -lINF, ll a4 = -lINF, ll a5 = -lINF, ll a6 = -lINF, ll a7 = -lINF)
{
return max(max(max(max(max(max(a1, a2), a3), a4), a5), a6), a7);
}
static ll Min(ll a1 = lINF, ll a2 = lINF, ll a3 = lINF, ll a4 = lINF, ll a5 = lINF)
{
return min(min(min(min(a1, a2), a3), a4), a5);
}
void solve()
{
string a;
ll b;
cin >> a;
cin >> b;
ll len = a.size();
ll ans = 0;
ll mi = 1;
for (ll i = len - 1; i >= 0; i--)
{//i == len - 1 时,幂等于0
ans += (mi * (a[i] - '0'))%b;
ans %= b;
mi *= 10;
mi %= b;
}
cout << gcd(ans, b) << endl;
}
int main()
{
int t = 1;
while (t--)
{
solve();
}
return 0;
}
/*
⡀⠎⠀⠀⠀⠀⠀⠀⠀⣸⣿⣿⣿⣿⣄⠃⠈⣶⡛⠿⠭⣉⠛⠿⡿⠛⠉⣀⣠⣤⣭⡏⠴⢀⣴⣿⣿⣿⣿⣿⣿⠀⠀⠀⠀⠀⠀⠀⠙⣿⣿
⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⣿⣿⣿⣿⣷⣱⣬⠛⠉⠀⠀⢠⠀⠀⠀⢀⣀⠀⠉⠿⣿⣾⣿⣿⣿⣿⣿⣿⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠈⡿
⠀⠀⠀⠀⠀⠀⠀⢀⢿⣿⣿⣿⣿⣿⣿⠋⠀⠀⠀⠀⠀⡏⠀⠀⠀⠀⠈⠳⠀⠀⠀⠻⣿⣿⣿⣿⣿⣿⠋⠀⣇⠀⠀⠀⠀⠀⠀⠀⠀⠈
⠀⠀⠀⠀⠀⠀⠀⣸⠀⣿⣿⣿⣿⠟⠀⠀⠀⠂⠀⠀⢠⠀⠀⠀⠀⠀⠀⠀⠈⡀⠀⠀⠀⠻⣿⣿⣿⣿⣷⡀⠘
⠀⠀⠀⠀⠀⠀⠀⣧⣿⣿⣿⣿⠋⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠈⠀⠀⠀⠀⠙⣿⣿⣿⣿⣿⣄⣧
⠀⠀⠀⠀⠀⠀⣸⣿⣿⣿⣿⠁⠀⠀⠀⠀⠀⠀⠀⠀⣾⠀⠀⠀⠀⠀⠀⠀⠀⠀⢧⠀⠀⠀⠀⠈⢿⣿⣿⣿⣿⣿⣆
⠀⠀⠀⠀⠀⢀⣿⣿⣿⣿⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠀⠀⠀⠀⠀⢂⠻⣿⣿⣿⣿⣿⣄
⠀⠀⠀⠀⠀⣿⣿⣿⣿⣹⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣇⠀⠀⠀⠀⠀⡄⠈⢿⣿⣿⣿⣿⣆
⠀⠀⠀⠀⣿⣿⣿⣿⠁⡇⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠐⠸⠀⠀⠻⣿⣿⣿⣆⢦
⠀⠀⢠⣿⣿⣿⣿⠃⠀⠀⠀⠀⠀⠀⠀⣼⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡏⣧⠀⠀⠀⠀⠐⣇⠀⠀⠙⣿⣿⣿⡄⠙⣄
⠀⣴⣿⣿⣿⣿⠏⠀⢸⠀⠀⠀⠀⠀⠀⡿⢿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣃⣈⣦⠀⠀⠀⠀⢹⠀⠀⠀⠸⣿⣿⣿⠀⠀⠳⣀
⠋⣸⣿⣿⣿⡟⠀⠀⠀⡆⠀⠀⠀⠀⠀⡏⠙⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠀⢠⠀⠀⠀⢧⠀⠀⠀⠀⡇⠀⠀⠀⠘⣿⣿⣷⠀⠀⠘
⠀⣿⣿⣿⢩⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⣀⠀⢱⠀⡀⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠂⢀⣴⣶⣿⣿⡀⠀⠀⢻⠀⠀⠀⠀⠹⣿⣿⡄
⢸⣿⣿⠃⠈⠀⠀⢸⠀⣿⣆⠀⠀⠀⠀⣿⣿⣿⠷⠘⡀⠀⠀⠀⠀⠀⠀⢠⢹⡀⠈⡿⠻⣿⣛⢿⣿⣷⡀⠈⠀⠀⠀⠀⠀⢻⣿⣿
⣿⣿⣿⠀⠀⠀⠀⢸⠀⡇⣼⣄⠀⠀⠀⢻⣿⡄⠑⠑⣿⡀⠀⠀⠀⢀⠀⠂⠇⠀⠀⠖⠛⢿⣿⣿⣌⢿⣿⣿⡆⠀⠀⠀⠀⠀⣿⣿⡀
⣿⣿⡇⠀⠀⠀⠀⢸⠀⣾⣿⣿⡷⠿⣷⣤⣿⣿⡄⠀⠀⠀⠑⠤⡀⠀⠃⠀⠀⠀⠀⣿⣶⣿⣿⣿⣿⣆⠙⣿⣧⠀⠀⠀⠀⠀⣿⣿⡇
⣿⣿⠁⠀⠀⠀⠀⠘⣾⣿⣿⠁⣴⣿⣿⣿⣿⣿⣇⠀⠀⠀⠀⠀⠀⠈⠀⠀⠀⠀⠀⠸⡏⠙⣿⠉⠻⣿⠀⠀⣿⠀⠀⠀⣄⠀⣿⢸⣷
⣿⣿⡇⠀⠀⠀⠀⠀⣿⣿⠁⠀⣿⣿⠋⣿⠏⠙⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⠀⢀⢻⠀⠀⢀⡟⢀⣿⣸⢃⠟
⣿⣿⣿⠀⡄⠀⠀⠀⠘⠻⡄⠀⢹⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡘⠀⢀⣿⠃⣿⣿⡗⠁
⣧⣿⣿⣧⢹⡀⠀⠀⠀⠱⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠀⣴⣿⣿⣾⣿⣿⣿
⢿⠘⣿⣿⣿⣿⣤⠀⠢⡀⠱⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣵⣿⣿⣿⣿⣿⣿⣿⣿⣷
⠀⠉⣿⣿⣿⡿⣿⠻⣷⣬⣓⣬⣄⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠉⠈⠈⠈⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⠃⠼⢉⣿⣿⣿⣿⣿⣿⣿
⠀⠀⣿⣿⣿⣷⠀⠀⠀⠘⣿⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⣿⡏⠀⠀⢸⠀⢻⢿⣿⣿⡏⣿
⠀⢸⣿⣿⣿⣿⠀⠀⠀⠀⢻⣿⣿⣤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣴⣾⣿⣿⣿⣿⠀⠀⠀⢸⠀⠀⢸⣿⣿⠘⡀
⢦⡿⣿⣿⣿⢿⠀⠀⠀⠀⢸⣿⣿⣿⣿⣿⣿⣿⣶⣶⣦⡄⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⣿⣿⣿⣿⣿⣿⣿⠀⠀⠀⠘⡄⠀⠈⣿⣿⡄⠱
⣴⠛⣾⣿⣿⢸⠀⠀⠀⠀⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠿⡄⠀⠀⠀⠀⠀⠀⠀⣯⠛⣿⣿⣿⣿⣿⣿⣿⠀⠀⠀⠀⣇⠀⠀⣿⣿⣿
⠿⠀⣿⣿⣿⠀⠀⠀⠀⠀⠀⣿⣿⣿⣿⣿⣿⣿⣿⠟⠰⡾⠃⠀⠀⠀⠀⠀⠀⠀⠙⡟⠀⢻⣿⣿⣿⣿⣿⡆⠀⠀⠀⠸⠀⠀⠸⣿⣿⣷
⠆⢳⣿⣿⡇⠀⠀⠀⠀⠀⠀⣿⣿⣿⠛⠿⠿⢿⡟⠀⠀⠉⠦⣀⡤⢶⠀⠖⠲⠶⠊⠀⠀⠀⢻⡛⠛⠛⣿⣿⠀⠀⠀⠀⠃⠀⠀⢿⣿⣿
*/
#include <iostream>
#include <string>
long long mod(std::string s,long long m)
{
int n = s.size();
long long ans = 0;
for(int i = 0;i < n;++i)
{
ans = (ans * 10 + s[i] - '0') % m;
}
return ans;
}
std::string gcd(std::string a,long long b)
{
if(b == 0)
{
return a;
}
return gcd(std::to_string(b),mod(a,b));
}
int main()
{
std::string a;
long long b;
std::cin>>a>>b;
std::cout<<gcd(a,b);
} void async function () {
// Write your code here
function gcd(...numbers){
return numbers.reduce((a,b)=>{
while(b){
[a,b]=[b,a%b];
}
return a;
})
}
let a = BigInt(await readline());
let b = BigInt(await readline());
console.log(gcd(a,b).toString());
}()