游游定义一个字符串是“好串”,当且仅当该字符串相邻的字符不相等。例如"arcaea"是好串,而"food"不是好串。
游游拿到了一个字符串,她可以将该字符串的各个字符顺序随意打乱。她想知道一共可以生产多少种不同的好串?
一个仅包含小写字母的字符串,长度不超过10。
好串的数量。
aab
1
只有"aba"这一种好串。
arc
6
aaa
0
我们将使用拉马努金瞪眼法解决这一题
注意到,我们要求的不是排序不同的字符串,而是本质不同的字符串
也就是说,字符串aba,有且只有一种aba,而不是aba和aba(a1 a2 , a2 a1)
显然,这是一个dp问题,但是铃仙不会dp,所以否决了
瞪眼法可得,字符串最长为10,因此,暴力是必要的
我们只需要求出所有的字符串序列,使用经典的递归方式
在递归的同时标记顺序,然后在递归底部,对当前字符串进行一次哈希,来筛除相同的字符串
于是愉快的wa了,(好在我技高一筹)
我们发现,哈希有碰撞的概率,于是我们将使用u_set,ull
将模数设置为:212370440120127957
于是愉快的tle了,(好在我技高一筹)
我们发现,使用经典递归找序列太慢了,于是我们使用c++的next_permutation来找序列
结果还是tle了
于是最后使用拉马努金瞪眼法,发现n==10时,并且没有重复的字符会超时,于是我们加个特判,ac了
注意到,代码要写成这样
void solve()
{
string wd;
cin >> wd;
vector<int>vis(wd.size(), 0);
vector<int>id(wd.size(), 0);
unordered_set<unsigned ll>ans;
set<char>cnt;
for (auto e : wd)cnt.insert(e);//这一段是特判
if (cnt.size() == wd.size())
{
ll ans = 1;
ffp(i, 1, cnt.size())ans *= i;
cout << ans << endl;
return;
}
auto plasans = [&]()->void
{
int flag = 1;
unsigned ll hs = wd[id[0]];
for (int i = 1; i < id.size(); i++)
{
if (wd[id[i]] == wd[id[i - 1]])
{
flag = 0;
}
hs *= 100;
hs += wd[id[i]];
hs %= MOD;
}
if (flag)ans.insert(hs);
};
ffp(i, 0, wd.size() - 1)
{
id[i] = i;
}
do
{
plasans();
} while (next_permutation(id.begin(), id.end()));
cout << ans.size() << endl;
}
int main()
{
int t = 1;
while (t--)
{
solve();
}
return 0;
}
/*
⡀⠎⠀⠀⠀⠀⠀⠀⠀⣸⣿⣿⣿⣿⣄⠃⠈⣶⡛⠿⠭⣉⠛⠿⡿⠛⠉⣀⣠⣤⣭⡏⠴⢀⣴⣿⣿⣿⣿⣿⣿⠀⠀⠀⠀⠀⠀⠀⠙⣿⣿
⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⣿⣿⣿⣿⣷⣱⣬⠛⠉⠀⠀⢠⠀⠀⠀⢀⣀⠀⠉⠿⣿⣾⣿⣿⣿⣿⣿⣿⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠈⡿
⠀⠀⠀⠀⠀⠀⠀⢀⢿⣿⣿⣿⣿⣿⣿⠋⠀⠀⠀⠀⠀⡏⠀⠀⠀⠀⠈⠳⠀⠀⠀⠻⣿⣿⣿⣿⣿⣿⠋⠀⣇⠀⠀⠀⠀⠀⠀⠀⠀⠈
⠀⠀⠀⠀⠀⠀⠀⣸⠀⣿⣿⣿⣿⠟⠀⠀⠀⠂⠀⠀⢠⠀⠀⠀⠀⠀⠀⠀⠈⡀⠀⠀⠀⠻⣿⣿⣿⣿⣷⡀⠘
⠀⠀⠀⠀⠀⠀⠀⣧⣿⣿⣿⣿⠋⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠈⠀⠀⠀⠀⠙⣿⣿⣿⣿⣿⣄⣧
⠀⠀⠀⠀⠀⠀⣸⣿⣿⣿⣿⠁⠀⠀⠀⠀⠀⠀⠀⠀⣾⠀⠀⠀⠀⠀⠀⠀⠀⠀⢧⠀⠀⠀⠀⠈⢿⣿⣿⣿⣿⣿⣆
⠀⠀⠀⠀⠀⢀⣿⣿⣿⣿⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠀⠀⠀⠀⠀⢂⠻⣿⣿⣿⣿⣿⣄
⠀⠀⠀⠀⠀⣿⣿⣿⣿⣹⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣇⠀⠀⠀⠀⠀⡄⠈⢿⣿⣿⣿⣿⣆
⠀⠀⠀⠀⣿⣿⣿⣿⠁⡇⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠐⠸⠀⠀⠻⣿⣿⣿⣆⢦
⠀⠀⢠⣿⣿⣿⣿⠃⠀⠀⠀⠀⠀⠀⠀⣼⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡏⣧⠀⠀⠀⠀⠐⣇⠀⠀⠙⣿⣿⣿⡄⠙⣄
⠀⣴⣿⣿⣿⣿⠏⠀⢸⠀⠀⠀⠀⠀⠀⡿⢿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣃⣈⣦⠀⠀⠀⠀⢹⠀⠀⠀⠸⣿⣿⣿⠀⠀⠳⣀
⠋⣸⣿⣿⣿⡟⠀⠀⠀⡆⠀⠀⠀⠀⠀⡏⠙⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠀⢠⠀⠀⠀⢧⠀⠀⠀⠀⡇⠀⠀⠀⠘⣿⣿⣷⠀⠀⠘
⠀⣿⣿⣿⢩⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⣀⠀⢱⠀⡀⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠂⢀⣴⣶⣿⣿⡀⠀⠀⢻⠀⠀⠀⠀⠹⣿⣿⡄
⢸⣿⣿⠃⠈⠀⠀⢸⠀⣿⣆⠀⠀⠀⠀⣿⣿⣿⠷⠘⡀⠀⠀⠀⠀⠀⠀⢠⢹⡀⠈⡿⠻⣿⣛⢿⣿⣷⡀⠈⠀⠀⠀⠀⠀⢻⣿⣿
⣿⣿⣿⠀⠀⠀⠀⢸⠀⡇⣼⣄⠀⠀⠀⢻⣿⡄⠑⠑⣿⡀⠀⠀⠀⢀⠀⠂⠇⠀⠀⠖⠛⢿⣿⣿⣌⢿⣿⣿⡆⠀⠀⠀⠀⠀⣿⣿⡀
⣿⣿⡇⠀⠀⠀⠀⢸⠀⣾⣿⣿⡷⠿⣷⣤⣿⣿⡄⠀⠀⠀⠑⠤⡀⠀⠃⠀⠀⠀⠀⣿⣶⣿⣿⣿⣿⣆⠙⣿⣧⠀⠀⠀⠀⠀⣿⣿⡇
⣿⣿⠁⠀⠀⠀⠀⠘⣾⣿⣿⠁⣴⣿⣿⣿⣿⣿⣇⠀⠀⠀⠀⠀⠀⠈⠀⠀⠀⠀⠀⠸⡏⠙⣿⠉⠻⣿⠀⠀⣿⠀⠀⠀⣄⠀⣿⢸⣷
⣿⣿⡇⠀⠀⠀⠀⠀⣿⣿⠁⠀⣿⣿⠋⣿⠏⠙⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⠀⢀⢻⠀⠀⢀⡟⢀⣿⣸⢃⠟
⣿⣿⣿⠀⡄⠀⠀⠀⠘⠻⡄⠀⢹⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡘⠀⢀⣿⠃⣿⣿⡗⠁
⣧⣿⣿⣧⢹⡀⠀⠀⠀⠱⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠀⣴⣿⣿⣾⣿⣿⣿
⢿⠘⣿⣿⣿⣿⣤⠀⠢⡀⠱⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣵⣿⣿⣿⣿⣿⣿⣿⣿⣷
⠀⠉⣿⣿⣿⡿⣿⠻⣷⣬⣓⣬⣄⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠉⠈⠈⠈⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⠃⠼⢉⣿⣿⣿⣿⣿⣿⣿
⠀⠀⣿⣿⣿⣷⠀⠀⠀⠘⣿⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⣿⡏⠀⠀⢸⠀⢻⢿⣿⣿⡏⣿
⠀⢸⣿⣿⣿⣿⠀⠀⠀⠀⢻⣿⣿⣤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣴⣾⣿⣿⣿⣿⠀⠀⠀⢸⠀⠀⢸⣿⣿⠘⡀
⢦⡿⣿⣿⣿⢿⠀⠀⠀⠀⢸⣿⣿⣿⣿⣿⣿⣿⣶⣶⣦⡄⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⣿⣿⣿⣿⣿⣿⣿⠀⠀⠀⠘⡄⠀⠈⣿⣿⡄⠱
⣴⠛⣾⣿⣿⢸⠀⠀⠀⠀⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠿⡄⠀⠀⠀⠀⠀⠀⠀⣯⠛⣿⣿⣿⣿⣿⣿⣿⠀⠀⠀⠀⣇⠀⠀⣿⣿⣿
⠿⠀⣿⣿⣿⠀⠀⠀⠀⠀⠀⣿⣿⣿⣿⣿⣿⣿⣿⠟⠰⡾⠃⠀⠀⠀⠀⠀⠀⠀⠙⡟⠀⢻⣿⣿⣿⣿⣿⡆⠀⠀⠀⠸⠀⠀⠸⣿⣿⣷
⠆⢳⣿⣿⡇⠀⠀⠀⠀⠀⠀⣿⣿⣿⠛⠿⠿⢿⡟⠀⠀⠉⠦⣀⡤⢶⠀⠖⠲⠶⠊⠀⠀⠀⢻⡛⠛⠛⣿⣿⠀⠀⠀⠀⠃⠀⠀⢿⣿⣿
*/
#include <iostream>
#include <string>
#include <algorithm>
int main()
{
std::string s;
std::cin>>s;
std::sort(s.begin(),s.end());
int ans = 0,n = s.size();
do{
int flag = 1;
for(int i = 1;i < n;++i)
{
if(s[i] == s[i-1])
{
flag = 0;
break;
}
}
ans += flag;
}while(std::next_permutation(s.begin(),s.end()));
std::cout<<ans<<'\n';
}