寒假训练营6 J天空之城
请问有没有大佬知道下面代码为什么使用连接一次边连通块数量减1就只能通过70分。
重新写个循环就可以AC。在印象中是可以这样判断有没有最小生成树把,而且同样的最小生成树H题这样写法都可以通过。
#include <bits/stdc++.h>
using namespace std;
#define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0)
#define all(__vv__) (__vv__).begin(), (__vv__).end()
#define endl "\n"
#define pai pair<int, int>
#define ms(__x__,__val__) memset(__x__, __val__, sizeof(__x__))
#define rep(i, sta, en) for(int i=sta; i<=en; ++i)
typedef long long ll; typedef unsigned long long ull; typedef long double ld;
inline ll read() { ll s = 0, w = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') w = -1; for (; isdigit(ch); ch = getchar()) s = (s << 1) + (s << 3) + (ch ^ 48); return s * w; }
inline void print(ll x, int op = 10) { if (!x) { putchar('0'); if (op) putchar(op); return; } char F[40]; ll tmp = x > 0 ? x : -x; if (x < 0)putchar('-'); int cnt = 0; while (tmp > 0) { F[cnt++] = tmp % 10 + '0'; tmp /= 10; } while (cnt > 0)putchar(F[--cnt]); if (op) putchar(op); }
inline ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; }
ll qpow(ll a, ll b) { ll ans = 1; while (b) { if (b & 1) ans *= a; b >>= 1; a *= a; } return ans; } ll qpow(ll a, ll b, ll mod) { ll ans = 1; while (b) { if (b & 1)(ans *= a) %= mod; b >>= 1; (a *= a) %= mod; }return ans % mod; }
const int dir[][2] = { {0,1},{1,0},{0,-1},{-1,0},{1,1},{1,-1},{-1,1},{-1,-1} };
const int MOD = 1e9 + 7;
const int INF = 0x3f3f3f3f;
const int N = 2e5 + 7;
const int M = 2e6 + 7;
ll n, m;
int head[N], tot, fa[N];
map<string, int> mp;
struct Node {
string u, v;
ll w;
bool operator < (const Node& opt) const {
return w < opt.w;
}
}edge[M];
int find(int x) { return x == fa[x] ? x : fa[x] = find(fa[x]); }
void solve() {
mp.clear();
rep(i, 1, N - 1) fa[i] = i;
string st;
cin >> st;
int cnt = 0;
rep(i, 1, m) {
cin >> edge[i].u >> edge[i].v;
cin >> edge[i].w;
if (!mp.count(edge[i].u))
mp[edge[i].u] = ++cnt;
if (!mp.count(edge[i].v))
mp[edge[i].v] = ++cnt;
}
sort(edge + 1, edge + 1 + m);
cnt = n;
ll ans = 0;
rep(i, 1, m) {
int fu = find(mp[edge[i].u]), fv = find(mp[edge[i].v]);
if (fu != fv) {
fa[fv] = fu;
ans += edge[i].w;
--cnt;
}
if (cnt == 1) break;
}
// if (cnt == 1) cout << ans << endl; wa的
// else cout << "NO!" << endl;
int flag = 1; // ac的
int flag1 = 1;
rep(i, 1, n) {
if (fa[i] == i && !flag) {
flag1 = 0;
}
if (fa[i] == i && flag) {
flag = 0;
}
}
if (flag1)
cout << ans << endl;
else cout << "No!" << endl;
}
int main() {
js;
//int T = read();
while (cin >> n >> m)
solve();
return 0;
}
查看19道真题和解析
