首页 / 产品经理
#

产品经理

#
824854次浏览 9462人互动
此刻你想和大家分享什么
热门 最新
面试官:Deepseek推理大模型与指令大模型(如豆包、文心)等有什么不同?
一、训练范式与核心技术1. 强化学习主导- DeepSeek-R1基于大规模强化学习(RL)完成后训练,其强化学习训练占比超过95%,甚至存在完全依赖RL的DeepSeek-R1-Zero版本。- 传统指令模型(如文心、ChatGPT O1)则更依赖监督微调(SFT)和人类反馈的强化学习(RLHF)。2. 冷启动与多阶段训练- DeepSeek-R1通过引入高质量“冷启动”数据辅助初始阶段学习,并结合多阶段训练策略(如拒绝采样)提升推理能力。- 而指令模型通常直接从预训练模型通过SFT对齐人类偏好。二、能力与任务适配性1. 复杂推理能力- DeepSeek-R1专门针对数学推导、代码生成、逻辑分析等复杂任务优化,其推理过程中支持自我验证、错误检测及多路径探索。- 指令模型更侧重通用对话和指令理解,在复杂推理任务中表现较弱。2. 生成质量差异- DeepSeek-R1的纯RL版本(R1-Zero)存在生成内容可读性较低的问题,需通过混合训练策略改进,- 而指令模型因依赖SFT数据,输出更符合人类语言习惯。三、架构设计与成本效率1. 优化算法创新- DeepSeek-R1采用Group Relative Policy Optimization(GRPO)等新型RL算法,支持无监督条件下的推理能力进化。- 指令模型通常沿用PPO等传统RLHF算法。2. 成本优势- DeepSeek-R1在同等性能下成本比OpenAI o1系列低30倍,且在数学、代码基准测试中达到甚至超越Claude 3.5 Sonnet等模型。四、应用场景与合规性1. 垂直领域适配- DeepSeek-R1更适用于科研、金融等高精度推理场景,- 而ChatGPT O1等指令模型偏向通用客服、教育等泛化场景。          
点赞 评论 收藏
分享
03-21 12:17
已编辑
哈尔滨工业大学 产品经理
面试官:什么是Agent ?与LLM的区别?
Agent(智能体)与LLM(大语言模型)的区别与联系1. Agent的定义Agent(智能体)是一种能够自主感知环境、制定目标、规划行动并执行任务的实体。它通常由多个模块组成,包括:1️⃣感知模块:接收输入(如文本、传感器数据)。2️⃣决策模块:基于目标或规则制定策略(可能依赖LLM或其他模型)。3️⃣记忆模块:存储历史信息或知识。4️⃣执行模块:调用工具或API完成任务(如搜索、计算、控制设备)。Agent的应用场景广泛,例如自动驾驶、智能客服、自动化流程等,强调主动性、持续性和环境交互能力。2. LLM的定义LLM(大语言模型)是一种基于海量文本训练的自然语言处理模型,核心能力是理解和生成文本。例如,GPT-4、Claude等模型擅长文本生成、问答、翻译等任务,但本质上是一个“静态”模型:被动响应:需用户输入触发,无法自主行动。1️⃣无记忆性:默认不保留上下文(需通过技术手段实现)。2️⃣无工具调用能力:需依赖外部系统扩展功能。3. 核心区别1️⃣自主性Agent能主动规划任务并调用工具(如API、搜索引擎),持续与环境交互。LLM仅被动响应用户输入,无法独立决策或执行动作。2️⃣功能范围不同:Agent是多模块系统,整合记忆、推理、工具调用等功能,适用于复杂任务链(如自动化流程)。LLM仅处理文本输入输出,需依赖外部系统扩展功能(如通过插件调用工具)。3️⃣架构与复杂性:Agent是系统级架构,包含感知、决策、执行等组件,需管理动态任务流程。LLM是单一模型,仅作为Agent的“语言处理模块”存在。4. 联系与协作1️⃣LLM可作为Agent的“大脑”:Agent常利用LLM处理自然语言理解、生成和简单推理,例如分析用户意图或生成回复。2️⃣Agent扩展LLM的能力:通过整合记忆、工具调用等模块,Agent使LLM突破纯文本交互的限制,例如AutoGPT调用搜索引擎或API完成任务。总结来说:Agent是“行动者”:具备自主性和系统性,能独立完成复杂任务。LLM是“语言专家”:专注文本处理,需依赖外部系统实现功能扩展。         
点赞 评论 收藏
分享
玩命加载中
牛客网
牛客网在线编程
牛客网题解
牛客企业服务