算法岗越来越卷,还在纠结简历写什么? 拒绝千篇一律的“minist手写数字识别”! 今天盘点 3 个不同技术方向的硬核项目,建议根据自己的赛道,选一个死磕到底!👇1️⃣ 【LLM 应用赛道】—— 紧跟风口 📂 项目:基于 LangChain + RAG 的垂直领域问答助手为什么做: 现在 10 家面试 8 家问大模型。不懂 RAG(检索增强生成)真的很难聊!核心考点: 向量数据库 (Milvus/Faiss)、Prompt Engineering、文档切片策略、甚至 LoRA 微调。一句话亮点: “解决了大模型幻觉问题,实现了基于本地私有数据的精准问答。”2️⃣ 【硬核基建赛道】—— 专治手痒 📂 项目:从零手撸 Transformer (Pytorch复现)为什么做: 别只做“调包侠”!面试问 Multi-head Attention 细节又又又卡壳了?核心考点: Self-Attention 矩阵计算、Positional Encoding 原理、Mask 机制。一句话亮点: “不依赖高级 API,从底层张量运算构建模型,深入理解 Attention 机制。”3️⃣ 【AIGC 视觉赛道】—— 视觉魔法 📂 项目:Stable Diffusion 扩散模型复现与 LoRA 微调为什么做: CV 岗已经从“识别”卷到了“生成”。不要再玩那个YOLO !核心考点: DDPM/DDIM 采样原理、UNet 结构(mile-stone)、CLIP 多模态对齐、ControlNet 控制生成。一句话亮点: “掌握 AIGC 核心流派,具备模型微调与可控图像生成能力。”💡 最后的小建议: 项目在精不在多。 与其罗列 多 个 Demo,不如把其中一个吃透,把遇到的 Corner Case、性能优化、思考过程写进简历里。