首页 > 试题广场 >

孩子们的游戏(圆圈中最后剩下的数)

[编程题]孩子们的游戏(圆圈中最后剩下的数)
  • 热度指数:417901 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 256M,其他语言512M
  • 算法知识视频讲解
    每年六一儿童节,牛客都会准备一些小礼物和小游戏去看望孤儿院的孩子们。其中,有个游戏是这样的:首先,让 n 个小朋友们围成一个大圈,小朋友们的编号是0~n-1。然后,随机指定一个数 m ,让编号为0的小朋友开始报数。每次喊到 m-1 的那个小朋友要出列唱首歌,然后可以在礼品箱中任意的挑选礼物,并且不再回到圈中,从他的下一个小朋友开始,继续0... m-1报数....这样下去....直到剩下最后一个小朋友,可以不用表演,并且拿到牛客礼品,请你试着想下,哪个小朋友会得到这份礼品呢?

数据范围:
要求:空间复杂度 ,时间复杂度
示例1

输入

5,3

输出

3
示例2

输入

2,3

输出

1

说明

有2个小朋友编号为0,1,第一次报数报到3的是0号小朋友,0号小朋友出圈,1号小朋友得到礼物  
示例3

输入

10,17

输出

2
推荐

如果只求最后一个报数胜利者的话,我们可以用数学归纳法解决该问题,为了讨      论方便,先把问题稍微改变一下,并不影响原意:

 问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人 继续从0开始报数。求胜利者的编号。

 我们知道第一个人(编号一定是m%n-1) 出列之后,剩下的n-1个人组成了一个新      的约瑟夫环(以编号为k=m%n的人开始):

        k  k+1  k+2  ... n-2, n-1, 0, 1, 2, ... k-2并且从k开始报0。

现在我们把他们的编号做一下转换:

k     --> 0

k+1   --> 1

k+2   --> 2

...

...

k-2   --> n-2

k-1   --> n-1

变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解: 例如x是最终的胜利者,那么根据上面这个表把这个x变回去不刚好就是n个人情 况的解吗?!!变回去的公式很简单,相信大家都可以推出来:x'=(x+k)%n。

令f[i]表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n]。

递推公式

f[1]=0;

f[i]=(f[i-1]+m)%i;  (i>1)

有了这个公式,我们要做的就是从1-n顺序算出f[i]的数值,最后结果是f[n]。 因为实际生活中编号总是从1开始,我们输出f[n]+1。

class Solution {
public:
    int LastRemaining_Solution(unsigned int n, unsigned int m)
    {
        if(n==0)
            return -1;
        if(n==1)
            return 0;
        else
            return (LastRemaining_Solution(n-1,m)+m)%n;
    }
};

编辑于 2015-08-18 23:33:31 回复(68)

问题信息

难度:
0条回答 121765浏览

热门推荐

通过挑战的用户

查看代码
孩子们的游戏(圆圈中最后剩下的数)