首页 > 试题广场 >

Battle Over Cities (25)

[编程题]Battle Over Cities (25)
  • 热度指数:3256 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32M,其他语言64M
  • 算法知识视频讲解
It is vitally important to have all the cities connected by highways in a war. If a city is occupied by the enemy, all the highways from/toward that city are closed. We must know immediately if we need to repair any other highways to keep the rest of the cities connected. Given the map of cities which have all the remaining highways marked, you are supposed to tell the number of highways need to be repaired, quickly.
For example, if we have 3 cities and 2 highways connecting city1 -city2 and city1 -city3 . Then if city1 is occupied by the enemy, we must have 1 highway repaired, that is the highway city2 -city3 .

输入描述:
Each input file contains one test case.  Each case starts with a line containing 3 numbers N (<1000), M and K, which are the total number of cities, the number of remaining highways, and the number of cities to be checked, respectively.  Then M lines follow, each describes a highway by 2 integers, which are the numbers of the cities the highway connects.  The cities are numbered from 1 to N.  Finally there is a line containing K numbers, which represent the cities we concern.


输出描述:
For each of the K cities, output in a line the number of highways need to be repaired if that city is lost.
示例1

输入

3 2 3<br/>1 2<br/>1 3<br/>1 2 3

输出

1<br/>0<br/>0
考察连通集的应用
package go.jacob.day830;

import java.util.Scanner;

/**
 * 1013. Battle Over Cities (25)
 * 
 * @author Jacob 运用连通集。
 *         连通集具体数据结构参考:http://blog.csdn.net/zjkc050818/article/details/77703880  *         这里使用quick_union
 */
public class Demo2 {
	static int count;// 记录连通集个数
	private static int[] id;// 记录每个节点属于哪个集合
	private static int[] size;// 记录每个集合的节点个数,当将两个集合连通时,将节点数较少的集合加到节点数较多的集合上

	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		int citys = sc.nextInt(), roads = sc.nextInt(), checked = sc.nextInt();
		if(citys<2){
			System.out.println(0);
			return;
		}
		
		
		// 由于节点序号是从1开始,所以初始化的时候要注意
		id = new int[citys + 1];
		size = new int[citys + 1];

		// 保存所有路径
		int[][] road = new int[roads][2];
		for (int i = 0; i < roads; i++) {
			road[i][0] = sc.nextInt();
			road[i][1] = sc.nextInt();
		}
		int[] checkCity = new int[checked];
		for (int i = 0; i < checked; i++)
			checkCity[i] = sc.nextInt();

		for (int i = 0; i < checked; i++) {
			init();
			solve(checkCity[i], road);
		}
		sc.close();
	}

	// 初始化id和size数组.每个节点属于本节点,且个数为1
	private static void init() {
		for (int i = 1; i < id.length; i++) {
			id[i] = i;
			size[i] = 1;
		}
		count = id.length-1;
	}

	private static void solve(int root, int[][] road) {
		for (int i = 0; i < road.length; i++) {
			int p = road[i][0], q = road[i][1];
			// 如果本条路径中有root节点,则跳过此次循环。
			if (p == root || q == root)
				continue;
			union(p,q);
		}
		//count()返回连通集个数,-2的原因是:
		//删除某一个节点需要减1,删除以后,如果有N个连通集,相连需要N-1条边
		System.out.println(count()-2);
	}

	/*
	 * 查找p属于的连通集
	 */
	private static int find(int p) {
		while(id[p]!=p)
			p=id[p];
		return p;
	}
	/*
	 * 将p,q所在的两个连通集相连
	 */
	private static void union(int p, int q) {
		int pRoot=find(p),qRoot=find(q);
		if(pRoot==qRoot)
			return;
		if(size[pRoot]>size[qRoot]){
			id[qRoot]=pRoot;
			size[pRoot]+=size[qRoot];
		}else{
			id[pRoot]=qRoot;
			size[qRoot]+=size[pRoot];
		}
		count--;
	}
	/*
	 * 返回连通集数
	 */
	private static int count() {
		return count;
	}

} 


发表于 2017-08-30 11:18:19 回复(0)
更多回答
//Dfs实现联通块的计算
#include <cstdio>
#include <cstring>
#include <vector>
using namespace std;

const int maxn = 1000 + 10;
int current_point, vis[maxn];
vector<int> G[maxn];

void dfs(int p){
	if(p == current_point) return;
	if(vis[p]) return;
	vis[p] = 1;
	for(unsigned int i=0;i<G[p].size();i++){
		dfs(G[p][i]);
	}
}

int main(){
	int n, m, k;
	scanf("%d %d %d", &n, &m, &k);
	for(int i=0;i<m;i++){
		int p1, p2;
		scanf("%d %d", &p1, &p2);
		G[p1].push_back(p2);
		G[p2].push_back(p1);
	}
	for(int i=0;i<k;i++){
		int block=0;
		scanf("%d", &current_point);
		memset(vis, 0, sizeof(vis));
		for(int j=1;j<=n;j++){
			if(!vis[j]){
				dfs(j);
				block ++;
			}
		}
		printf("%d\n", block-2);
	}
	if(n && !m && k)
		printf("0\n");
	return 0;
}

//并查集实现较为简单且高效

#include <set>
#include <vector>
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;

const int maxn = 1000 + 10;

struct Edge
{
	int p1, p2;
	Edge(int u, int v):p1(u), p2(v) {}
};

set<int> block;
vector<Edge> edges;
int p[maxn];

int find_sym(int x){
	return (p[x] == x)? x : (p[x] = find_sym(p[x]));
}

int main(){
	int n, m, k;
	scanf("%d %d %d", &n, &m, &k);
	for(int i=0;i<m;i++){
		int u, v;
		scanf("%d %d", &u, &v);
		edges.push_back(Edge(u, v));
	}
	for(int i=0;i<k;i++){
		int lost_city;
		scanf("%d", &lost_city);
		block.clear();
		memset(p, 0, sizeof(p));
		for(int j=1;j<=n;j++) p[j] = j;
		for(int h=0;h<m;h++){
			Edge e = edges[h];
			if(e.p1==lost_city || e.p2==lost_city) continue;
			else{
				int x = find_sym(e.p1);
				int y = find_sym(e.p2);
				if(x!=y) p[x] = y;
			}
		}
		for(int j=1;j<=n;j++){
			int symbol = find_sym(j);
			if(!block.count(symbol)) block.insert(symbol);
		}
		cout << block.size()-2 << endl;
	}
	return 0;
}

编辑于 2017-08-08 11:39:34 回复(2)
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn=1010;
int n,m,k,ans,v1,v2;
int G[maxn][maxn];
bool vis[maxn]={false};
void DFS(int u){
    vis[u]=true;
    for(int v=1;v<=n;v++){
        if(vis[v]==false&&G[u][v]==1)
            DFS(v);
    }
}
void DFSTrave(){
    for(int u=1;u<=n;u++){
        if(vis[u]==false){
            DFS(u);
            ans++;
        }
    }
}
int main(){
    cin>>n>>m>>k;
    for(int i=1;i<=m;i++){
        scanf("%d%d",&v1,&v2);
        G[v1][v2]=G[v2][v1]=1;
    }
    for(int i=1;i<=k;i++){
        fill(vis,vis+1010,false);  //初始化访问结点
        cin>>v1;
        vis[v1]=true;              //本轮绕过v1
        ans=0;
        DFSTrave();
        if(n==1) cout<<0<<"\n";    //特例,只有一个点时
        else cout<<ans-1<<"\n";         //要添加的边数即为连通分量数减1
    }
    return 0;
} 

发表于 2019-01-29 15:58:39 回复(0)
//并查集的使用,需要使用路径压缩,不然会超时
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <iomanip>
#include <algorithm>
#include <string>
#include <math.h>
#include <vector>
#include <map>

using namespace std;
const int maxn = 1000;
const int maxe = 500000;
int father[maxn];
int findFather(int x) {
    if(x == father[x])
        return x;
    int f = findFather(father[x]);
    father[x] = f;
    return f;
}
int cnt = 0;
void Union(int x, int y) {
    int fx = findFather(x);
    int fy = findFather(y);
    if(fx != fy) {
        father[fx] = fy;
        cnt++;
    }
}
struct Edge {
    int x,y;
};
Edge edges[maxe];
int main() {
    int n,m,k;
    scanf("%d %d %d", &n, &m, &k);
    for(int i=0; i<m; i++) {
        scanf("%d %d",&edges[i].x, &edges[i].y);
    }
    for(int i=0; i<k; i++) {
        int city;
        scanf("%d", &city);
        cnt = 0;
        for(int p=1; p<=n; p++) {
            father[p] = p;
        }
        for(int j=0; j<m; j++) {
            if(edges[j].x != city && edges[j].y != city) {
                Union(edges[j].x,edges[j].y);
            }
        }

        if(n-cnt == 0){  //合并后只剩余一个堆时,即被占领的城市,就没有需要修复的铁路了
            printf("0\n");
        }else{        //否则需要修复的公路数就是未被占领的城市合并后的堆数减一
            printf("%d\n",n-cnt-2);
        }
    }
}


发表于 2019-08-23 20:54:40 回复(0)
发表于 2018-07-30 17:54:34 回复(0)

穷举法 
#include<stdio.h>

#include<iostream>

#include<string>

#include<vector>

using namespace std;


struct Edge

{

    int nextIndex;//下一个结点的id

    bool isUsed;//是否损毁

};


void dfs(vector<Edge> roadMaps[1001],int N,int nextRoadId,bool *usedCity)

{

    usedCity[nextRoadId] = true;

    for(int i=0;i<roadMaps[nextRoadId].size();i++)

    {

        int nextId = roadMaps[nextRoadId][i].nextIndex;

        if(!usedCity[nextId]&&roadMaps[nextRoadId][i].isUsed)

            dfs(roadMaps,N,nextId,usedCity);

    }

};


void checkThisNode(vector<Edge> roadMaps[1001],int checkCityId,int N)

{

    int realId = checkCityId-1;

    //cout<<"check:"<<checkCityId<<endl;

    for(int i=0;i<roadMaps[realId].size();i++)

    {

        roadMaps[realId][i].isUsed = false;//设置成被损毁的路

    }

    

    bool usedCity[1001]={false};


    //找到孤立的结点,然后遍历

    int sum = 0;

    for(int i=0;i<N;i++)

    {

        if(i==realId)

            continue;

        if(!usedCity[i])

            sum++;

        dfs(roadMaps,N,i,usedCity);

    }


    cout<<sum-1<<endl;



    for(int i=0;i<roadMaps[realId].size();i++)

    {

        roadMaps[realId][i].isUsed = true;//恢复被损毁的路

    }

};




int main()

{

    int N,M,K;

    scanf("%d %d %d",&N,&M,&K);

    vector<Edge> roadMaps[1001];

    for(int i=0;i<M;i++)

    {

        int a,b;

        scanf("%d %d",&a,&b);

        Edge tmp;

        tmp.nextIndex = b-1;

        tmp.isUsed = true;

        roadMaps[a-1].push_back(tmp);


        Edge tmp2;

        tmp2.nextIndex = a-1;

        tmp2.isUsed = true;

        roadMaps[b-1].push_back(tmp2);

        //cout<<"a="<<a<<" b="<<b<<endl;

    }

    //cout<<"id:"<<roadMaps[0][2].nextIndex<<endl;

    for(int i=0;i<K;i++)

    {

        int needCheck;

        scanf("%d",&needCheck);

        checkThisNode(roadMaps,needCheck,N);

    }

    return 0;

}

发表于 2018-02-17 17:35:05 回复(0)
#include<bits/stdc++.h>
using namespace std;

const int Max=1010;
vector<int> G[Max];
bool visit[Max];
int query;

void DFS(int v) {
	visit[v]=1;
	for(int i=0; i<G[v].size(); i++) {
		if(!visit[G[v][i]]&&G[v][i]!=query) {
			DFS(G[v][i]);
		}
	}
}

int main() {
	int n,m,k;
	scanf("%d %d %d",&n,&m,&k);
	for(int i=0; i<m; i++) {
		int x,y;
		scanf("%d %d",&x,&y);
		G[x].emplace_back(y);
		G[y].emplace_back(x);
	}
	for(int q=0; q<k; q++) {
		scanf("%d",&query);
		int answer=-1;
		memset(visit,0,sizeof(visit));
		for(int i=1; i<=n; i++) {
			if(query==i||visit[i]) continue;
			DFS(i);
			answer++;
		}
        if(answer==-1) printf("0");
		else printf("%d\n",answer);
	}
	return 0;
}

发表于 2022-11-27 22:00:07 回复(0)
#include<cstdio>
(802)#include<algorithm>
using namespace std;
const int maxn=1010;
const int INF=0x3fffffff;
int G[maxn][maxn]={0},graph[maxn][maxn];
bool vis[maxn];
void DFS(int start,int n)
{
    vis[start]=true;
    for(int i=1;i<=n;i++)
    {
        if(vis[i]==false&&graph[start][i]==1)
            DFS(i,n);
    }
}
int main()
{
    int n,m,k;
    scanf("%d%d%d",&n,&m,&k);
    if(n==1)
    {
        puts("0");
        return 0;
    }
    for(int i=0;i<m;i++)
    {
        int c1,c2;
        scanf("%d%d",&c1,&c2);
        G[c1][c2]=1;
        G[c2][c1]=1;
    }
    for(int i=0;i<k;i++)
    {
        fill(vis,vis+maxn,false);
        int c=0,num=0;
        for(int j=1;j<=n;j++)
            for(int m=1;m<=n;m++)
                graph[j][m]=G[j][m];
        scanf("%d",&c);
        for(int j=1;j<=n;j++)
            if(graph[c][j]==1)
            {
                graph[c][j]=0;
                graph[j][c]=0;
            }
        for(int j=1;j<=n;j++)
            if(vis[j]==false)
            {
                num++;
                DFS(j,n);
            }
        printf("%d\n",num-2);
    }
    return 0;
}

发表于 2020-03-31 15:57:09 回复(0)
#include<bits/stdc++.h>
using namespace std;
int G[1005][1005] ={0};
int vis[1005];

void dfs(int i ,int n) {
    vis[i] = 1;
    for (int j = 1; j < n+1; j++) {
        if (vis[j] == 0 && G[i][j] == 1) {
            dfs(j, n);
        }
    }
}

int main() {
	int n, m, k;
	cin >> n >> m >> k;
	
	while (m--) {
		int a, b;
		scanf("%d %d",&a,&b);
		G[a][b] = 1;
        G[b][a] = 1;
	}
    int city;
	while (cin >> city) {
        fill(vis,vis+1005,0);
        vis[city] = 1;
        int cnt = 0;
        for (int i = 1; i < n+1; i++) {
            if (vis[i] == 0){
                dfs(i, n+1);
                cnt++;
            }
            
        }
        printf("%d\n",max(0,cnt-1));
    }

}
用二维数组G 记录 连通信息,用vis 记录访问信息
1.将 断点设置为 已访问
2.遍历 每个城市i ,将与城市i 连通的城市全部设置为 已访问, cnt++
3.cnt 表示 连通区的 个数,返回 max(0 , cnt - 1)
发表于 2020-02-22 13:31:34 回复(0)
#使用并查集
#include<iostream>

using namespace std;

int Tree[1000];
int key[1000];

struct Edge{
    int x, y;
}edges[1000000];

int findRoot(int x){
    if(Tree[x] == -1) return x;
    else{
        int temp = findRoot(Tree[x]);
        Tree[x] = temp;
        return temp;
    }
}

void combine(int a, int b){
    int r_a = findRoot(a);
    int r_b = findRoot(b);
    if(r_a != r_b) Tree[r_a] = r_b;
}

int main(){
    int N,M,K;
    cin>>N>>M>>K;
    for(int i = 0; i < M; i++){
        int a, b;
        cin>>a>>b;
        edges[i].x = a;
        edges[i].y = b;
    }
    for(int i = 0; i < K; i++){
        cin>>key[i];
    }
    for(int i = 0; i < K; i++){
        int k = key[i],counter=0;
        fill(Tree,Tree+N+1,-1);
        for(int j = 0; j < M; j++){
            if(edges[j].x != k && edges[j].y !=k){
                combine(edges[j].x, edges[j].y);
            }
        }
        for(int j = 1; j < N+1; j++)
            if(Tree[j]==-1) counter++;
        cout<<((counter-2)>0?counter-2:0)<<endl;
    }

    return 0;
}

发表于 2019-08-28 12:53:48 回复(0)
网上的方法基本都是DFS和并查集。我的方法是数边法:剩下n-1个节点连通至少需要n-2条边,遍历一遍图,查看剩下n-1个节点间有几条边,再用n-2减去它就是要补充的边数。
但是测试通不过,谁能看出来问题出在哪?
#include <iostream>

using namespace std;

int main() {
    int i, j, x, y;
    int n, m, k;
    int c1, c2;
    int count;
    bool map[1000][1000] = {0};

    scanf("%d %d %d", &n, &m, &k);

    for (i = 0; i < m; ++i) {
        scanf("%d %d", &c1, &c2);
        map[c1][c2] = true;
        map[c2][c1] = true;
    }

    for (i = 0; i < k; ++i) {
        scanf("%d", &c1);
        count = 0;
        for (x = 1; x <= n; ++x) {
            if (x == c1) {
                continue;
            }
            for (y = x+1; y <= n; ++y) {
                if (y == c1) {
                    continue;
                }
                if (map[x][y]) {
                    ++count;
                }
            }
        }
        count = (n - 2) - count;
        count = count >= 0 ? count : 0;
        printf("%d\n", count);
    }

    return 0;
}

发表于 2019-07-04 16:49:42 回复(1)
#include<iostream>
#include<cstring>
using namespace std;

//1013 Battle Over Cities
//城市从1开始编号,到n为止
//pat.4容易超时,多提交几次运气好就卡过去了
//或者用scanf改写cin

#define maxx 100000
#define maxn 1001


void dfs(int (*g)[maxn], int o,int s, int n,int *visited) {
    //从o点出发遍历图,所有与s相关的路都不通
    visited[o] = 1;
    if (o == s) {
         //从s点出发,哪里都去不了
        return;  
    }

    for (int i = 1; i <= n; ++i) {
        if (i == s) continue; //从哪里都到不了s
        if (!visited[i] && g[o][i] ==1 ) { //从o出发可以到i,且i点没去过
                visited[i] = 1; //访问i点
                dfs(g, i, s, n, visited);
        }
    }

}

int get_components_num(int (*g)[maxn], int s, int n, int *visited) {
    //s沦陷后,g中有多少连通分量
    //含s在内有n个顶点
    if (n <= 0) return -1;

    int cnt = 0;
    //统计联通分量数量
    for (int i = 1; i <= n; i++) {//城市编号从1开始
        if (!visited[i]) {
            dfs(g, i, s, n, visited);
            cnt++;
        }
    }

    return cnt-1; //统计出来的联通分量数是包含s这个孤立点的,删去s
    
}

//开在main()里属于栈区,会stackoverflow
int g[maxn][maxn];
int main(int _argc, char *_argv[], char *_get_initial_narrow_environment[]) {
    int n, m, k;//n<1000,城市数,剩余铁路数,待check城市数
    int x, y; //无向无权图
    int visited[maxn] = {};
    int answer[maxn] = {};
    //初始化
    for (n = 0; n < maxn; n++) {
        for (k = 0; k < maxn; k++) {
            g[n][k] = maxx;
        }
    }

    cin >> n >> m >> k;
    for (int i = 0; i < m; i++) {
        cin >> x >> y;
        g[x][y] = 1;
        g[y][x] = 1;
    }

    for (int i = 0; i < k; i++){
        cin >> x; //若是此城陷落,有几路待援
        //问题可以转化为求x点删去后,图中剩几个连通分量
        //连通分量数n的话,只需要n-1条线就可以把它们连起来

        //初始化visited
        memset(visited+1, 0, n * sizeof(int)); //下标从1开始,访问从visited[1]开始

        y = get_components_num(g, x, n, visited);//去掉s后的连通分量数

        //牛客.1 当图中仅有1个点时,这个点沦陷后只剩0个连通分量,和1个连通分量的情况相同,都不需要修路,输出0
        if (y == 0) { y = 1; }
        cout << y-1  << endl; //联通分量数-1即为所需抢修的最少铁路数
    }


    return 0;
}
发表于 2019-01-14 14:50:50 回复(0)
可以用并查集做,也可以用图的遍历。我这里用深度优先搜索,但是在PAT上会TLE。
#include<iostream>
#include<vector>
#include<cstring>
using namespace std;
vector<int> adj[1001];
int query;
int vis[1001];
void dfs(int v)
{
    if(v==query) return ;
    vis[v]=1;
    for(int i=0;i<adj[v].size();++i)
    {
        if(vis[adj[v][i]]==0)
        {
            dfs(adj[v][i]);
        }
    }
}
int main()
{
    int n,m,k;
    cin>>n>>m>>k;
    for(int i=1;i<=m;++i)
    {
        int n1,n2;
        cin>>n1>>n2;
        adj[n1].push_back(n2);
        adj[n2].push_back(n1);
    }
    for(int i=1;i<=k;++i)
    {
        cin>>query;
        int block=0;
        memset(vis,0,sizeof(vis));
        for(int i=1;i<=n;++i)
        {
            if(i!=query&&vis[i]==0)
            {
                dfs(i);
                block++;
            }
        }
        if(block==0) cout<<0<<endl;
        else  cout<<block-1<<endl;
    }
    return 0;
}
发表于 2018-08-13 21:05:27 回复(1)
#include<algorithm>
#include<cstdio>
#include<vector>
#include<cstring>
#include<iostream>
using namespace std;
const int maxn=1010;
vector<int> G[maxn];
int  N,M,K;
int delP;
bool vis[maxn]={0};
void DFS(int x)
{
    vis[x]=1;
    for(int i=0;i<G[x].size();i++)
    {
        if(vis[G[x][i]]==0 && delP!=G[x][i] )
          {
              DFS(G[x][i]);
          }
    }
}
int main()
{
    cin>>N>>M>>K;
    //类似于链表
    for(int i=0;i<M;i++)
    {
        int c1,c2;
        cin>>c1>>c2;
        G[c1].push_back(c2);
        G[c2].push_back(c1);
    }
    for(int del=0;del<K;del++)
    {
        memset(vis,0,sizeof(vis));
        cin>>delP;
        int block=0;
        for(int i=1;i<=N;i++)
            if(vis[i]==false && i!=delP)
              {
                  DFS(i);
                  block++;
              }
       if(block==0) cout<<block<<endl;
        else cout<<block-1<<endl;
    }
}

发表于 2018-06-11 20:28:04 回复(0)

就dfs了一下求连通集数量

#include <iostream>
#include <vector>
#include <cstring>
using namespace std;

//邻接矩阵
int connect_matrix[1005][1005] = { 0 };
vector<int> result;
bool mark[1005] = { false };

void dfs(int lost, int total, int pos) 
{
    mark[pos] = true;
    for (int i = 1; i <= total; i++) {
        if (mark[i] == false && connect_matrix[pos][i] == 1
            && i != lost) {
            dfs(lost, total, i);
        }
    }
}

int main()
{
    int M, N, K;
    cin >> M >> N >> K;
    int start, end;
    for (int i = 0; i < N; i++) {
        cin >> start >> end;
        connect_matrix[start][end] = 1;
        connect_matrix[end][start] = 1;
    }
    int occupied;
    int road = 0;
    for (int i = 0; i < K; i++) {
        cin >> occupied;
        memset(mark, false, 1005);
        road = 0;
        for (int j = 1; j <= M; j++) {
            if (mark[j] == false && j != occupied) {
                dfs(occupied, M, j);
                road++;
            }
        }
        result.push_back(road==0?road:road-1);
    }
    for (int i = 0; i < result.size(); i++)
        cout << result[i] << endl;

    return 0;
}
发表于 2018-02-09 17:22:16 回复(0)
深度优先搜索
#include<iostream>
#include<vector>
using namespace std;
void dfs(vector<bool> &visited,vector<vector<int>> &Data,int start)
{
if(visited[start])return;
visited[start]=true;
for(int i=0;i<Data[start].size();i++)
{
int val=Data[start][i];
if(!visited[val])dfs(visited,Data,val);
}
}
int parts(vector<bool> visited,vector<vector<int>> &Data)
{
int part=0;
for(int i=1;i<visited.size();i++)
{
if(!visited[i])
{
dfs(visited,Data,i);
for(int j=i;j<visited.size();j++)
{
if(!visited[j])
{
part++;
i=j-1;
break;
}
}
}
}
return part+1;
}
int main()
{
int citycount;
int road;
int conser;
cin>>citycount>>road>>conser;
vector<vector<int>> Data(citycount+1);
vector<int> number;
for(int i=0;i<road;i++)
{
int left;
int right;
cin>>left;
cin>>right;
Data[left].push_back(right);
Data[right].push_back(left);
}
vector<bool> visited(citycount+1,false);
for(int i=0;i<conser;i++)
{
int index;
cin>>index;
number.push_back(index);
}
for(int i=0;i<conser;i++)
{
int index=number[i];
visited[index]=true;
cout<<parts(visited,Data)-1<<endl;
visited[index]=false;
}
return 0;
}

发表于 2017-09-05 14:04:27 回复(0)
//并查集,没有用bfs
int findroot( int num, int JH[])

{

    if (JH[num]==-1) return num;

    else

    {

        int temp= findroot (JH[num],JH);

        JH[num]=temp;

        return temp;

    }

}

#include <iostream>

#include <stdio.h>

int edge[2][10000];

int main( int argc, const char * argv[]) {

    int n,m,k;

    scanf ( "%d %d %d" ,&n,&m,&k);

    int i;

    for (i=0;i<m;i++)

    {

        int a,b;

        scanf ( "%d %d" ,&a,&b);

        edge [0][i]=a;

        edge [1][i]=b;

    }

    for (i=0;i<k;i++)

    {

        int city,count=0;

        scanf ( "%d" ,&city);

        int JH[1001];

        int j;

        for (j=1;j<=n ;j++)

            JH[j]=-1;

        for (j=0;j<m;j++)

        {

            if ( edge [0][j]!=city&& edge [1][j]!=city)

            {

                int root1= findroot ( edge [0][j],JH);

                int root2= findroot ( edge [1][j],JH);

                if (root1!=root2)

                {

                    JH[root2]=root1;

                }

            }

            

        }

        JH[city]=0;

        for (j=1;j<=n;j++)

        {

           

            if (JH[j]==-1)

                count++;

        }

        if (n!=1)

        printf ( "%d\n" ,count-1);

        else

            printf ( "0\n" );

        

    }

    return 0;

}

发表于 2017-01-07 19:32:25 回复(0)
import java.util.Scanner;


public class test1013_2 {
		public static void main(String[] args) {
			Scanner scanner=new Scanner(System.in);
			while(scanner.hasNext()){
				int citys=scanner.nextInt();
				if(citys==1) {
					System.out.println(0);
					return;
				}
				int roads=scanner.nextInt();
                MAX=citys+1;
                 father =new int[MAX];
                rank=new int[MAX];
				int checked=scanner.nextInt();
				int[][] road=new int[roads][2];
				for (int i = 0; i < road.length; i++) {
					road[i][0]=scanner.nextInt();
					road[i][1]=scanner.nextInt();
				}
				int[] check=new int[checked];
				for (int i = 0; i < checked; i++) {
					check[i]=scanner.nextInt();
				}
				cal(citys,road,check);
			}
		}
		private static void cal(int citys, int[][] road, int[] check) {
			int res[]=new int[check.length];
			for (int i = 0; i < check.length; i++) {
				int temp=check[i];
				res[i]=citys-2-helper(temp,road,citys);
			}
			for (int i = 0; i < res.length; i++) {
				System.out.println(res[i]);
			}
		
		}
		private static int  helper(int temp, int[][] road, int citys) {
			int res=0;
			init();//初始化高度和父节点
			for (int i = 0; i < road.length; i++) {
				int a=road[i][0];
				int b=road[i][1];
				if(a==temp||b==temp) continue;//删除和temp有关的边 
				if(Union(a, b)) res++;
			}
			return res;
		}
//		初始化秩(树的高度)和父节点
		private static void init() {
			for (int i = 0; i <father.length; i++) {
				father[i]=i;
			}
			for (int i = 0; i < rank.length; i++) {
				rank[i]=1;
			}
		}
		static int MAX;
		static int father[]; /* father[x]表示x的父节点*/
		static int rank[];	/*rank[x]表示x的秩*/
		
		static int find(int x){
			if(father[x]!=x){
				father[x]=find(father[x]);//这个回溯时的压缩路径是精华
			}
			return father[x];
		}
		//判断是否Union成功
		static boolean Union(int x,int y){
			x=find(x);
			y=find(y);
			if(x==y) return false;
			else {
				if(rank[x]>rank[y])
				father[y]=x;
				else{
					if(rank[x]==rank[y]) rank[y]++;
					father[x]=y;
				}
			}
			return true;
		}
}


发表于 2016-08-06 13:34:18 回复(0)
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
const int maxn=1005;
int n,m,k;
bool vis[maxn];
vector<int>v[maxn];
void dfs(int u){
    vis[u]=true;
    for(int i=0;i<v[u].size();i++){
        if(!vis[v[u][i]]){
            dfs(v[u][i]);
        }
    }
}
int main(){
    //freopen("in.txt","r",stdin);
    scanf("%d%d%d",&n,&m,&k);
    int from,to,u,ans;
    for(int i=0;i<m;i++){
        scanf("%d%d",&from,&to);
        v[from].push_back(to);
        v[to].push_back(from);
    }
    for(int i=0;i<k;i++){
        fill(vis,vis+n+1,false);
        ans=-1;
        scanf("%d",&u);
        vis[u]=true;
        for(int i=1;i<=n;i++){
            if(!vis[i]){
                dfs(i);
                ans++;
            }
        }
        ans=max(ans,0);
        printf("%d\n",ans);
    }
    return 0;
}
复杂度O(n^2)
编辑于 2016-08-01 12:15:23 回复(0)
#include<cstdio>
#include<cstring>
#include<vector>
#define maxn 1010
using namespace std;
vector<int>g[maxn];
bool visit[maxn];
int map[1000][1000]={0};
int n,k,m,a;
int concern[1000];
void dfs(int i){
	if(i==a)return;
	if(visit[i]==1)return;
	visit[i]=1;
	for(int j=0;j<g[i].size();j++){
		dfs(g[i][j]);
	}
}
int main(){
	scanf("%d%d%d",&n,&m,&k);
	for(int i=0;i<m;i++){
		int x,y;
		scanf("%d%d",&x,&y);
		g[x].push_back(y);
		g[y].push_back(x);
	}
	for(int i=0;i<k;i++){
		scanf("%d",&a);
		memset(visit,0,sizeof(visit));
		int block=0;
		for(int j=1;j<=n;j++){
			if(visit[j]==0){
				block++;
				dfs(j);
			}
		} 
		printf("%d\n",block-2);
	}
	return 0;
}
bfs搜索并计数联通集的个数,用vector存储图
发表于 2016-03-06 15:54:29 回复(0)