对于一棵由黑白点组成的二叉树,我们需要找到其中最长的单色简单路径,其中简单路径的定义是从树上的某点开始沿树边走不重复的点到树上的另一点结束而形成的路径,而路径的长度就是经过的点的数量(包括起点和终点)。而这里我们所说的单色路径自然就是只经过一种颜色的点的路径。你需要找到这棵树上最长的单色路径。
给定一棵二叉树的根节点(树的点数小于等于300,请做到O(n)的复杂度),请返回最长单色路径的长度。这里的节点颜色由点上的权值表示,权值为1的是黑点,为0的是白点。
对于一棵由黑白点组成的二叉树,我们需要找到其中最长的单色简单路径,其中简单路径的定义是从树上的某点开始沿树边走不重复的点到树上的另一点结束而形成的路径,而路径的长度就是经过的点的数量(包括起点和终点)。而这里我们所说的单色路径自然就是只经过一种颜色的点的路径。你需要找到这棵树上最长的单色路径。
给定一棵二叉树的根节点(树的点数小于等于300,请做到O(n)的复杂度),请返回最长单色路径的长度。这里的节点颜色由点上的权值表示,权值为1的是黑点,为0的是白点。
class LongestPath { public: int maxLen = 0; //记录最长路径值(一定要赋初值) //获取路径长度 int getPath(TreeNode *root){ if(root == NULL){ return 0; } //记录左右子树最大长度 int left = 0; int right = 0; //处理左子树 if(root->left != NULL){ int ret = getPath(root->left); //左子树的最大长度 //如果这个节点和左子树颜色一样 if(root->val == root->left->val){ left = ret; //接收,否则没有接收 } } //处理右子树 if(root->right != NULL){ int ret = getPath(root->right); if(root->val == root->right->val){ right = ret; } } //记录最大长度值,包含左子树最大路径+根节点+右子树 maxLen = max(maxLen, (left+right+1)); //返回左右子树中最长的路径值 int t = max(left, right) + 1; return t; } int findPath(TreeNode *root){ if(root == NULL){ return 0; } getPath(root); return maxLen; } };
一开始题目理解错了,写了好长时间,思路是后序遍历,需要两个变量,一个是左子树和右子树中高度较大的值,一个是当前最长的子路径 这个子路径是看左子树高度加右子树高度和根节点之和的最大值(前提是节点的颜色相同的情况下) class LongestPath { public: int searchPath(TreeNode* node,int cur,int &max) { if(!node) return 0; int height1=1,height2=1; if(node->left) { int left=searchPath(node->left,node->left->val,max); if(node->left->val==cur) height1+=left; } if(node->right) { int right=searchPath(node->right,node->right->val,max); if(node->right->val==cur) height2+=right; } max=(height1+height2-1)>max?(height1+height2-1):max; return height1>height2?height1:height2; } int findPath(TreeNode* root) { // write code here if(!root) return 0; int max=0; int height=searchPath(root,root->val,max); return max; } };
和楼上老兄一样,题目意思开始理解错了,以为路径一直是从上到下走的,哎。。。这题跪了啊。 今天看到题目解答才发现原来路径是可以通过从左子树到右子树的,现在想想悔恨不已啊!就差那么一点了。 下面是解题思路: 后序遍历,路径无非是从左节点到当前节点到右节点(颜色相同),或者从当前节点到左右子树。 只要在后序遍历的基础上增加一些判断就可以了。 public int findPath(TreeNode root) { order(root); if (root == null) return 0; else return maxLength; } public int order(TreeNode root) { // write code here if (root == null) { return 0; } else { int leftLength = order(root.left); int rightLength = order(root.right); int length = 1; if (root.left == null && root.right == null) { length = 1; maxLength = Math.max(length, maxLength); } else { if (root.left != null && root.val == root.left.val) length += leftLength; if (root.right != null && root.val == root.right.val) length = Math.max(length, 1 + rightLength); if (root.left == null || root.right == null) { maxLength = Math.max(length, maxLength); } else { if (root.right.val == root.left.val && root.val == root.left.val) maxLength = Math.max(maxLength, leftLength + rightLength + 1); else maxLength = Math.max(length, maxLength); } } return length; } } int maxLength = 0;
class LongestPath: def __init__(self): self.maxlong = 0 #用来记录递归过程中出现过的最大长度 def findPath(self, root): self.findeach(root) return self.maxlong #返回最终结果 def findeach(self, root): if root.left is not None: x = self.findeach(root.left) #只要左子树不为空就递归一次 ml = x if root.left.val == root.val else 0 else: ml = 0 #ml是左子树的最大高度,颜色不同则为0 if root.right is not None: y = self.findeach(root.right) mr = y if root.right.val == root.val else 0 else: mr = 0 maxhigh = max(ml,mr)+1 #当前节点的最大高度 maxlong = ml+mr+1 #左子树高度+右子树高度+1=当前节点最大路径长度 if maxlong>self.maxlong: self.maxlong = maxlong #更新最大长度 return maxhigh
public class LongestPurePath { /** * @param args */ int maxLen = 0; public int findPath(TreeNode root) { // write code here if(root == null){ return 0; } getPath(root); return maxLen; } //获取左右子树中最长的路径值 public int getPath(TreeNode root) { if(root == null){ return 0; } //记录左右子数的最大路径长度 int left = 0; int right = 0; if(root.left!=null){ int len = getPath(root.left); //左子树的最大长度 if(root.val == root.left.val){ //颜色相同 left = len; } } if(root.right!=null){ int len = getPath(root.right); //左子树的最大长度 if(root.val == root.right.val){ //颜色相同 right = len; } } maxLen = Math.max(maxLen, left+right+1); //记录最大长度值,包含左子树最大路径+根节点+右子树 return Math.max(left, right) + 1; //返回左右子树中最长的路径值 } }
/* struct TreeNode { int val; struct TreeNode *left; struct TreeNode *right; TreeNode(int x) : val(x), left(NULL), right(NULL) { } };*/
class LongestPath {
vector<int> res; void helper(TreeNode* root,vector<int> &res,int listlenth){ if(root == NULL) res.push_back(listlenth); int val = root -> val; if(root -> left == NULL && root -> right == NULL){ res.push_back(listlenth ); }else{ if(root -> right == NULL){ if(root -> left -> val == val){ helper(root-> left,res,listlenth+1); }else{ res.push_back(listlenth); helper(root -> left,res,1); }
}else if(root -> left == NULL){ if(root -> right -> val == val){ helper(root -> right,res,listlenth+1); }else{ res.push_back(listlenth); helper(root -> right,res,1); } }else{ if(root -> right -> val != val && root -> left -> val !=val){ res.push_back(listlenth); helper(root -> right,res,1); helper(root -> left,res,1); }else if(root -> right -> val !=val){ helper(root -> left,res,listlenth+1);
helper(root -> right,res,1); }else if(root -> left -> val !=val){ helper(root -> right,res,listlenth+1); helper(root -> left,res,1); }else{ helper(root -> left,res,listlenth+1); helper(root -> right,res,listlenth+1); vector<int> leftdd; vector<int> rightdd; helper(root -> left,leftdd,1); helper(root -> right,rightdd,1); int ll = rightdd[0]+leftdd[0]+1; res.push_back(ll); } } } }
public: int findPath(TreeNode* root) { // write code here if(root == NULL) return 0; helper(root,res,1); int max = 0; for(int i = 0;i < res.size();++i){ max = res[i] > max ? res[i]:max; } return max; }
};
/* struct TreeNode { int val; struct TreeNode *left; struct TreeNode *right; TreeNode(int x) : val(x), left(NULL), right(NULL) { } };*/ class LongestPath { public: int longestPath = 0; int findPath(TreeNode* root) { // write code here dfs(root); return longestPath; } int dfs(TreeNode* root) { if (root == nullptr) { return 0; } int lP = dfs(root->left); int rP = dfs(root->right); if (root->left == nullptr || root->left->val != root->val) { lP = 0; } if (root->right == nullptr || root->right->val != root->val) { rP = 0; } longestPath = max(lP + rP + 1, longestPath); return max(lP, rP) + 1; } };
/* struct TreeNode { int val; struct TreeNode *left; struct TreeNode *right; TreeNode(int x) : val(x), left(NULL), right(NULL) { } };*/ class LongestPath { public: int res; int func(TreeNode* root){ if(root == nullptr) return 0; int leftPath = func(root->left); int rightPath = func(root->right); int num = 0; if(root->left && root->right && root->val == root->left->val && root->val == root->right->val){ num = leftPath + rightPath + 1; if (num > res) res = num; return max(leftPath, rightPath) + 1; }else if(root->left && root->val == root->left->val){ num = leftPath + 1; }else if(root->right && root->val == root->right->val){ num = rightPath + 1; }else{ num = 1; } if (num > res) res = num; return num; } int findPath(TreeNode* root) { res = 0; func(root); return res; } };
/* struct TreeNode { int val; struct TreeNode *left; struct TreeNode *right; TreeNode(int x) : val(x), left(NULL), right(NULL) { } };*/ class LongestPath { private: int maxn; public: LongestPath(){ maxn=0; } int findPath(TreeNode* root) { Traverse(root); return maxn; } int max(int a,int b){ return a>b?a:b; } int min(int a,int b){ return a<b?a:b; } int* Traverse(TreeNode* root){ int* result=new int[3]; result[0]=0;result[1]=0;result[2]=0; if(root==NULL) return result; int* left=Traverse(root->left); int* right=Traverse(root->right); int index=root->val; result[index]=max(left[index],right[index])+1; result[2]=result[index]+min(left[index],right[index]); if(maxn<result[2]) maxn=result[2]; return result; } };
import java.util.*; /* public class TreeNode { int val = 0; TreeNode left = null; TreeNode right = null; public TreeNode(int val) { this.val = val; } }*/ public class LongestPath { int maxLen=0; public int findPath(TreeNode root) { // write code here if(root == null) return 0; getPath(root); return maxLen; } public int getPath(TreeNode root) { // write code here if(root==null) return 0; int left = getPath(root.left); //左子树的最大长度 if(left!=0 && root.val!=root.left.val) left=0; int right = getPath(root.right); //左子树的最大长度 if(right!=0 && root.val!=root.right.val) right=0; //计算最大值 int Len=left+right+1; maxLen=maxLen>Len?maxLen:Len; //返回左右子树最大长度 return (Math.max(left, right) + 1); } }
使用了层次遍历的逆序。代码比后序遍历的要长
class LongestPath {
public:
int findPath(TreeNode* root) {
// write code here
int maxans=-1;
int ansarr[300];
vector<TreeNode *> vec;
vec.push_back(root);
int i=0;
for(int i=0;i<vec.size();++i)
{
if(vec[i]->left!=NULL)
vec.push_back(vec[i]->left);
if(vec[i]->right!=NULL)
vec.push_back(vec[i]->right);
}
for(int i=vec.size()-1;i>=0;--i)
{
int tmp =vec[i]->val; //1:0
int leftblack,leftwhite,rightblack,rightwhite,white,black;
if(vec[i]->left==NULL)
leftblack=leftwhite=0;
else
{
leftblack =vec[i]->left->val>>16;
leftwhite =vec[i]->left->val&0x0000FFFF;
}
if(vec[i]->right==NULL)
rightblack=rightwhite=0;
else
{
rightblack =vec[i]->right->val>>16;
rightwhite =vec[i]->right->val&0x0000FFFF;
}
if(tmp==1)
{
black=(int)max(leftblack,rightblack)+1;
maxans=leftblack+rightblack+1>maxans?leftblack+rightblack+1:maxans;
white=0;
}
else if(tmp==0)
{
white=(int)max(leftwhite,rightwhite)+1;
maxans=leftwhite+rightwhite+1>maxans?leftwhite+rightwhite+1:maxans;
black=0;
}
tmp=black<<16;
tmp+=white;
vec[i]->val=tmp;
}
return maxans;
}
};
import java.util.*; /** * 对@geassdai的代码进行了解释 * 从根节点分别往下递归,可以先从左子树往下走,在递归右子树 */ public class LongestPath { int max_path = 0;//最终的结果 int max_len = 0;//单个子树的长度 int len = 0;//临时的路径 public int findPath(TreeNode root) { if (root == null) return 0; setmaxpath(root); int tem = max_path; max_path = 0; max_len = 0; return tem; } public void setmaxpath(TreeNode root) { if (root == null) return; int l;//左子树 if (root.left != null && root.val == root.left.val) { len = 1; maxlen(root.left); l = max_len; max_len = 0; } else { l = 0; } System.out.println("l=" + l); int r;//从右子树开始往下走 if (root.right != null && root.val == root.right.val) { len = 1; maxlen(root.right); r = max_len; max_len = 0; } else { r = 0; } System.out.println("r=" + r); if (l + 1 + r > max_path)//加一是因还要把根节点加进去 max_path = l + 1 + r; setmaxpath(root.left); setmaxpath(root.right); } public void maxlen(TreeNode root) { if (root == null) return; if (root.left != null && root.val == root.left.val) { len++; maxlen(root.left); } else if (root.right != null && root.val == root.right.val) { len++; maxlen(root.right); } else if (len > max_len) { max_len = len; len = 0; } // return 0; } }
# -*- coding:utf-8 -*- #coding=utf-8 # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class LongestPath: def getPath(self,root): ###返回以root为根节点的树中的最长路径(最长相同颜色的节点路径)和最长单向路径(以root为末节点的一条路径) if(root==None): return 0,0; cur_MaxLen=1; cur_MaxOneSide=1; left_maxLen,right_maxLen=0,0; if(root.left): left_maxLen,left_maxOneSide=self.getPath(root.left); if(root.left.val==root.val): cur_MaxLen+=left_maxOneSide; cur_MaxOneSide=max(cur_MaxOneSide,left_maxOneSide+1); if(root.right): right_maxLen,right_maxOneSide=self.getPath(root.right); if(root.right.val==root.val): cur_MaxLen+=right_maxOneSide; cur_MaxOneSide=max(cur_MaxOneSide,right_maxOneSide+1); return max([cur_MaxLen,left_maxLen,right_maxLen]),cur_MaxOneSide; def findPath(self,root): return self.getPath(root)[0];
class LongestPath {
public:
int help(TreeNode *root,int &res){//求包含根节点root的最长单色路径,res是最终结果
if(root==NULL)
return 0;
int left=help(root->left,res);//包含左子树根节点的最长单色路径
int right=help(root->right,res);//包含右子树根节点的最长单色路径 if(root->left&&root->right){
if(root->val==root->left->val&&root->val==root->right->val){
int t=left+right+1;
if(t>res)
res=t;
return left>right?left+1:right+1;
}
else if(root->val==root->left->val){
int t=left+1>right?left+1:right;
if(t>res)
res=t;
return left+1;
}
else if(root->val==root->right->val){
int t=right+1>left?right+1:left;
if(t>res)
res=t;
return right+1;
}
else{
return 1;
}
}
else if(root->left){
if(root->val==root->left->val){
int t=left+1;
if(t>res)
res=t;
return left+1;
}
else{
return 1;
}
}
else if(root->right){
if(root->val==root->right->val){
int t=right+1;
if(t>res)
res=t;
return right+1;
}
else{
return 1;
}
}
else{
return 1;
}
}
int findPath(TreeNode* root) {
// write code here
if(root==NULL)
return 0;
int res=1;
help(root,res);
return res;
}
};
importjava.util.*;/*public class TreeNode {int val = 0;TreeNode left = null;TreeNode right = null;public TreeNode(int val) {this.val = val;}}*/publicclassLongestPath {intmax_path=0,max_len=0,len=0;publicintfindPath(TreeNode root){if(root==null)return0;setmaxpath(root);inttem = max_path;max_path = 0; max_len = 0;returntem;}publicvoidsetmaxpath(TreeNode root){if(root==null) return;intl ;if(root.left!=null&&root.val==root.left.val){len=1;maxlen(root.left);l=max_len;max_len=0;}elsel = 0;System.out.println("l="+l);intr;if(root.right!=null&&root.val==root.right.val){len=1;maxlen(root.right);r=max_len;max_len=0;}elser = 0;System.out.println("r="+r);if(l+1+r>max_path) max_path = l+1+r;setmaxpath(root.left);setmaxpath(root.right);}publicvoidmaxlen(TreeNode root){if(root==null) return;if(root.left!=null&&root.val==root.left.val){len++;maxlen(root.left);}elseif(root.right!=null&&root.val==root.right.val){len++;maxlen(root.right);}elseif(len>max_len){max_len = len;len = 0;}//return 0;}}
# -*- coding:utf-8 -*- # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class LongestPath: def findPath(self, root): # write code here self.max = 0 self.read_each_node(root) return self.max def read_each_node(self, node): if node.left is not None: lb, lw = self.read_each_node(node.left) else: lb, lw = 0,0 if node.right is not None: rb, rw = self.read_each_node(node.right) else: rb, rw = 0,0 if node.val == 0: # 白色 w = 1 b = 0 else: # 黑色 w = 0 b = 1 if w: node.b = 0 if lw > 0 and rw > 0: node.sub_w = lw + rw + w if node.sub_w > self.max: self.max = node.sub_w if lw > rw: node.w = lw + 1 else: node.w = rw + 1 else: node.sub_w = 0 # 没有利用价值 if lw > 0: node.w = lw + 1 elif rw > 0: node.w = rw + 1 else: node.w = 1 if node.w > self.max: self.max = node.w else: node.w = 0 if lb > 0 and rb > 0: node.sub_b = lb + rb + b if node.sub_b > self.max: self.max = node.sub_b if lb > rb: node.b = lb + 1 else: node.b = rb + 1 else: node.sub_b = 0 # 没有利用价值 if lb > 0: node.b = lb + 1 elif rb > 0: node.b = rb + 1 else: node.b = 1 if node.b > self.max: self.max = node.b return node.b, node.w
/* 本体难点在于考虑左子树+中间节点+右子树 */ class LongestPath { public: int findPath(TreeNode* root) { // write code here int sum = 0; myFindPath(root,sum); return sum; } int myFindPath(TreeNode *root,int &sum) { int left = 1,right = 1; if(root->left) { left += myFindPath(root->left,sum); if(root->left->val != root->val) left = 1; } if(root->right) { right += myFindPath(root->right,sum); if(root->right->val != root->val) right=1; } sum = max(sum,left+right-1); return left>right?left:right; } };
class LongestPath {public:int max=0;int f(TreeNode* root){if(root==NULL){return 0;}if(root->left==NULL&&root->right==NULL){return 1;}intl=f(root->left);intr=f(root->right);if(root->left&&root->right&&root->left->val==root->val&&root->right->val==root->val){intt=l+r+1;max=max>t?max:t;return l>r?l+1:r+1;}else if(root->left&&root->right&&root->left->val!=root->val&&root->right->val!=root->val){intt=l>r?l:r;max=max>t?max:t;return 1;}else if(root->left&&root->left->val==root->val){intt=l+1;max=max>t?max:t;max=max>r?max:r;return t;}else if(root->right&&root->right->val==root->val){intt=r+1;max=max>t?max:t;max=max>l?max:l;return t;}else{intt=l>r?l:r;max=max>t?max:t;return 1;}}int findPath(TreeNode* root) {// write code heref(root);return max;}};
class LongestPath {public:void find(TreeNode* cur, TreeNode *pre, int height, int& maxlength) {if(cur == nullptr) {maxlength = max(height, maxlength);return;}if(cur->val == pre->val) {find(cur->left, cur, height + 1, maxlength);find(cur->right, cur, height + 1, maxlength);}else{maxlength = max(height, maxlength);find(cur->left, cur, 1, maxlength);find(cur->right, cur, 1, maxlength);}}int findPath(TreeNode *root) {int maxlength = 0;find(root, root, 0, maxlength);return maxlength;}};