输出包含一行字符串,代表str。
输出一个整数,代表把str全部切割成回文串的最小切割数。
ABA
0
本身是回文串,不需要切割,直接输出0
ABCBAEEE
1
切割1次,变为“ABCBA”和“EEE”
时间复杂度,额外空间复杂度
。
#include<iostream>
#include<cstring>
using namespace std;
int main(void){
string str;
while(cin>>str){
int len = str.size();
int isRound[len][len];
memset(isRound,0,sizeof(isRound));
int dp[len+1];
dp[-1] = -1;
for(int i = 0;i<len;i++){
dp[i] = i;
for(int j = i;j>=0;j--){
if(str[i]==str[j]&&(i-j<2||isRound[j+1][i-1])){
isRound[j][i] = 1;
dp[i] = (dp[i]<dp[j-1]+1?dp[i]:dp[j-1]+1);
}
}
}
cout<<dp[len-1]<<endl;
}
} #include <stdio.h>
#include <string.h>
#include <stdbool.h>
#include <malloc.h>
#include <limits.h>
#define MIN(X, Y) ((X) < (Y) ? (X) : (Y))
// 初始化一个动态大小的矩阵
#define INIT_MATRIX(TYPE, PTR, COL, ROW) \
(PTR) = (TYPE **) malloc(sizeof(TYPE *) * (COL));\
for (int i = 0; i < (COL); i++) {\
(PTR)[i] = (TYPE *) calloc((ROW), sizeof(TYPE));\
}
// 释放一个动态大小的矩阵
#define FREE_MATRIX(PTR, COL) \
for (int i = 0; i < (COL); i++) {\
free((PTR)[i]);\
}\
free((PTR));
#define MAXLEN 5001
int min_cut(char *str);
int main(void) {
char str[MAXLEN];
scanf("%s", str);
printf("%d\n", min_cut(str));
return 0;
}
int min_cut(char *str) {
int n = (int) strlen(str), res;
int *dp = (int *) malloc(sizeof(int) * (n + 1));
bool **is_pal;
INIT_MATRIX(bool, is_pal, n, n);
dp[n] = -1;
for (int i = n - 1; i >= 0; i--) {
dp[i] = INT_MAX;
for (int j = i; j < n; j++) {
if (str[i] == str[j] && ((j - i < 2) || is_pal[i + 1][j - 1])) {
is_pal[i][j] = true;
dp[i] = MIN(dp[i], dp[j + 1] + 1);
}
}
}
res = dp[0];
free(dp);
FREE_MATRIX(is_pal, n);
return res;
} import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
public class Main {
private static boolean[][] isPalindrome;
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
char[] str = br.readLine().toCharArray();
// 预处理,先弄一个能够查询str[i:j]是否是回文串的二维表
int n = str.length;
isPalindrome = new boolean[n][n];
for(int i = 0; i < n; i++) Arrays.fill(isPalindrome[i], true);
for(int i = n - 2; i >= 0; i--){
for(int j = i + 1; j < n; j++)
isPalindrome[i][j] = str[i] == str[j] && isPalindrome[i + 1][j - 1];
}
// 递归求解最小分割数
System.out.println(process(str, 0));
}
private static int process(char[] str, int i) {
if(i == str.length) return 0;
int minCut = Integer.MAX_VALUE;
// i依次作为str上第一段回文的结尾
for(int end = i; end < str.length; end++)
if(isPalindrome[i][end]) minCut = Math.min(minCut, 1 + process(str, end + 1));
return minCut;
}
} process(str,i)表示的就是str从i开始,将后面切分为回文子串所需要的最少切割数,因此题目要求的就是process(str,0)。当然,我们要保证切割之后的每一段都是回文串,因此只考虑0~i已经是回文串的情况。而如果0~i已经是回文串了,就可以调用process(str,i+1)计算出将str从i+1到末尾切割成回文串的最少切割数的基础上,把0~i切出来的那一次切割加进来就行了,遍历所有可能的切割点i,选出代价最小的。然后我们根据递归的逻辑就能够改出如下的动态规划版本: import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
import java.util.Arrays;
public class Main {
private static boolean[][] isPalindrome;
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
char[] str = br.readLine().toCharArray();
// 预处理,先弄一个能够查询str[i:j]是否是回文串的二维表
int n = str.length;
boolean[][] isPalindrome = new boolean[n][n];
for(int i = 0; i < n; i++) Arrays.fill(isPalindrome[i], true);
for(int i = n - 2; i >= 0; i--){
for(int j = i + 1; j < n; j++)
isPalindrome[i][j] = str[i] == str[j] && isPalindrome[i + 1][j - 1];
}
// 动归求解最小分割数
int[] dp = new int[n];
for(int i = n - 1; i >= 0; i--){
dp[i] = Integer.MAX_VALUE;
for(int j = i; j < n; j++){
if(isPalindrome[i][j]) dp[i] = Math.min(dp[i], j < n - 1? 1 + dp[j + 1]: 0);
}
}
System.out.println(dp[0]);
}
} #include <iostream>
#include <cstring>
const int N = 5e3+2;
using namespace std;
string s;
int dp[N],can[N][N];
int main(){
ios::sync_with_stdio(false);
cin>>s;
int n = s.length();
s='*'+s;
for(int k=1;k<=n;k++){
for(int i=1;i+k<=n;i++){
if((can[i+1][i+k-1]||i+1>=i+k-1)&&s[i]==s[i+k])
can[i][i+k]=1;
}
}
for(int i=1;i<=n;i++){
dp[i]=dp[i-1]+1;
for(int j=1;j<=i;j++){
if(can[j][i]||j==i){
dp[i] = min(dp[i],dp[j-1]+1);
}
}
}
cout<<dp[n]-1<<endl;
}
#include <bits/stdc++.h>
using namespace std;
int main(){
string s;
cin>>s;
int n = s.length();
int a[n][n] = {0}, dp[n+1]={0};
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
a[i][j] = (i==j);
for(int i=1;i<n;i++){
dp[i] = dp[i-1] + 1;
for(int j=i;j>=0;j--){
if(s[i]==s[j] && (i-j<2 || a[j+1][i-1])){
a[j][i] = 1;
if(j==0)
dp[i] = min(dp[i], 0);
else
dp[i] = min(dp[i], dp[j-1]+1);
}
}
}
cout<<dp[n-1]<<endl;
return 0;
} #include <iostream>
(720)#include <string>
using namespace std;
int main() {
string s;
cin >> s;
int len = s.length();
int ishw[len][len];
int cnt[len];
for (int i = 0; i < len; i++) {
cnt[i] = 0;
for (int j = 0; j < len; j++) {
ishw[i][j] = i == j ? 1 : 0;
}
}
for (int i = 1; i < len; i++) {
cnt[i] = cnt[i-1] + 1;
for (int j = i; j >= 0; j--) {
if (s[i] == s[j] && (i - j < 2 || ishw[j+1][i-1])) {
ishw[j][i] = 1;
cnt[i] = min(j == 0 ? 0 : cnt[j-1] + 1, cnt[i]);
}
}
}
cout << cnt[len-1] << endl;
return 0;
}
import java.util.*;
public class Main {
public static void main (String[] args) {
Scanner sc = new Scanner(System.in);
String s = sc.nextLine();
System.out.println(getHui(s));
}
public static int getHui(String s) {
if (s == null || s.length() == 0 || s.length() == 1)
return 0;
char[] str = s.toCharArray();
//dp[i]表示在str中从[i...len-1]需要的最少分割数
int[] dp = new int[str.length+1];
//当整串字符串为回文结构时,确保我们可以得到正确的0
dp[str.length] = -1;
/*
如果在dp[i..len-1]中有j使str[i...j]为回文结构,则dp[i] = dp[j+1]+1。
所以dp[i] = min {dp[j+1] + 1 (i<=j<len & str[i..j]是回文)}
*/
//check[i][j] == true 代表 str[i..j]为回文
boolean[][] check = new boolean[str.length][str.length];
//check[i][j]为true的三种情况:
//1. i==j; 2.j-1 == 1时两个字符相同; 3. check[i+1][j-1]==true且str[i] == str[j]
for (int i = dp.length-2; i >= 0; i--) {
dp[i] = Integer.MAX_VALUE;
for (int j = i; j < str.length; j++) {
if(i == j)
check[i][j] = true;
else if (j - i == 1)
check[i][j] = str[i] == str[j];
else
check[i][j] = check[i+1][j-1] && str[i]==str[j];
if(check[i][j])
dp[i] = Math.min(dp[i], dp[j+1] + 1);
}
}
return dp[0];
}
} import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
String str = scanner.nextLine();
int result = minC(str);
System.out.println(result);
}
public static boolean[][] isPal(String s) {
boolean[][] pal = new boolean[s.length()][s.length()];
int len = s.length();
for(int i = len-1; i >= 0; i --) {
for(int j = i; j < len; j ++) {
if(i == j) { //只有一个字符时
pal[i][j] = true;
}else if(i+1 == j) { //只有两个字符时
pal[i][j]= s.charAt(i)==s.charAt(j);
}else{
pal[i][j] = pal[i+1][j-1]
&& s.charAt(i)==s.charAt(j);
}
}
}
return pal;
}
public static int minC(String str) {
boolean[][] pal = isPal(str); //接受保存字符串回文情况的二维数组
int[] minC = new int[str.length()+1];
//初始状态:
for(int i = 0; i <= str.length(); i ++) {
minC[i] = i-1;
}
//更新长度为i的最小剪切数:
for(int i = 2; i <= str.length(); i ++) {
//判断整体长度为i的字符串是否回文
if(pal[0][i-1]) { // 直接获取0-i区间的回文情况
minC[i] = 0;
continue;
}
//判断j至i区间字符串是否回文
for(int j = 0; j < i; j ++) {
if(pal[j][i-1]) { // 直接获取j至i区间的回文情况
minC[i] = Math.min(minC[i], minC[j]+1);
}
}
}
return minC[str.length()];
}
} import java.io.*;
public class Main{
public static void main(String[] args) throws IOException{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String str=br.readLine().trim();
System.out.print(minCut(str));
}
public static int minCut(String str){
if(str==null||str.equals("")){
return 0;
}
char[] chas=str.toCharArray();
int len=chas.length;
int[] dp=new int[len+1];
dp[len]=-1;
boolean[][] p=new boolean[len][len];
for(int i=len-1;i>=0;i--){
dp[i]=Integer.MAX_VALUE;
for(int j=i;j<len;j++){
if(chas[i]==chas[j]&&(j-i<2||p[i+1][j-1])){
p[i][j]=true;
dp[i]=Math.min(dp[i],dp[j+1]+1);
}
}
}
return dp[0];
}
} // JS 正确姿势
function cutStr(str) {
const list = []; //用来存数分割后的字符串
function checkStr(str) { //检验str是否是回文
return str.split('').reverse().join('') === str;
}
var repeatCut = function (str) {
if (checkStr(str)) { //递归出口:本身是个回文,就添加到list并返回;
list.push(str);
return;
}
for (var i = str.length; i > 0; i--) { //找出最大回文,添加到list内,剩下的继续找
if (checkStr(str.substring(0, i + 1))) {
list.push(str.substring(0, i + 1));
repeatCut(str.substring(i + 1, str.length));
break;
}
}
};
repeatCut(str);
var count = list.length - 1;
}; //思路1:闭包+递归
function cutStr(str) {
list = []; //用来存数分割后的字符串
function checkStr(str) { //检验str是否是回文
let rStr = str.split('').reverse().join('');
if (str === rStr) {
return true;
}
return false;
}
var repeatCut = function(str) {
if (checkStr(str)) { //递归出口:本身是个回文,就添加到list并返回;
list.push(str);
return;
}
for (var i = str.length; i > 0; i--) { //找出最大回文,添加到list内,剩下的继续找
if (checkStr(str.substring(0, i + 1))) {
list.push(str.substring(0, i + 1));
repeatCut(str.substring(i + 1, str.length));
}
}
};
repeatCut(str);
var count = list.length - 1;
return {
list,
count
};
};