有一次数学比赛,共有A,B和C三道题目。所有人都至少解答出一道题目,总共有25人。
在没有答出A的人中,答出B的人数是答出C的人数的两倍;单单答出A的人,比其他答出A的人总数多1;在所有只有答出一道题目的人当中,答出B和C的人数刚好是一半。
求只答出B的人数。
看了其他人的解答,写一种个人感觉更符合自己思路的答案。
由题意可得下述四个关系式:
把2、3、4带入1,可得3a+bc=26,再把式2带入,得3b+a=26。
接下来枚举b,
b a c (a=26-3b,c=a-b)
8 2 -
7 5 -
6 8 2
5 11 6 (注意由式2和式4可得a=b+c,b=2c+bc,进一步可以推出a>=b>=2c。)
所以a=8,b=6,c=2。