给定一个 n * m 的矩阵 a,从左上角开始每次只能向右或者向下走,最后到达右下角的位置,路径上所有的数字累加起来就是路径和,输出所有的路径中最小的路径和。
数据范围:
,矩阵中任意值都满足 
要求:时间复杂度
例如:当输入[[1,3,5,9],[8,1,3,4],[5,0,6,1],[8,8,4,0]]时,对应的返回值为12,
所选择的最小累加和路径如下图所示:
[[1,3,5,9],[8,1,3,4],[5,0,6,1],[8,8,4,0]]
12
[[1,2,3],[1,2,3]]
7
# # # @param matrix int整型二维数组 the matrix # @return int整型 # class Solution: def minPathSum(self , matrix ): # write code here if not matrix&nbs***bsp;not matrix[0]: return 0 m = len(matrix) n = len(matrix[0][0:]) dp = [] for i in range(m): dp.append(([0]*n)) dp[0][0] = matrix[0][0] for i in range(1, m): dp[i][0] = dp[i-1][0] + matrix[i][0] for i in range(1, n): dp[0][i] = dp[0][i-1] + matrix[0][i] for row in range(1, m): for col in range(1, n): dp[row][col] = min(dp[row-1][col], dp[row][col-1]) + matrix[row][col] return dp[-1][-1]
class Solution: def minPathSum(self , matrix ): n, m = len(matrix), len(matrix[0]) for i in range(1, n): matrix[i][0] += matrix[i-1][0] for j in range(1, m): matrix[0][j] += matrix[0][j-1] for i in range(1, n): for j in range(1, m): matrix[i][j] += min(matrix[i-1][j], matrix[i][j-1]) return matrix[n-1][m-1]动态规划
from functools import lru_cache class Solution: def minPathSum(self, matrix): n = len(matrix) - 1 m = len(matrix[0]) - 1 self.matrix = matrix return self.__gen(n, m) @lru_cache(maxsize=4000000) def __gen(self, i, j): if i > 0 and j > 0: return self.matrix[i][j] + min(self.__gen(i - 1, j), self.__gen(i, j - 1)) elif i > 0: return self.matrix[i][j] + self.__gen(i - 1, j) elif j > 0: return self.matrix[i][j] + self.__gen(i, j - 1) else: return self.matrix[i][j]
class Solution: def minPathSum(self , matrix ): rows = len(matrix) cols = len(matrix[0]) dp = [[0]*cols for _ in range(rows)] for col in range(cols): dp[0][col] = sum(matrix[0][:col+1]) for row in range(rows): sum_ = 0 for i in range(row+1): sum_ += matrix[i][0] dp[row][0] = sum_ for row in range(1,rows): for col in range(1,cols): dp[row][col] = min(dp[row-1][col],dp[row][col-1])+matrix[row][col] return dp[-1][-1]