给定任意两个集合X和Y。 函数f:X Y 称为单向的,如果对每一个x属于X,很容易计算出函数f(x)的值,而对大多数y属于Y, 要确定满足y=f(x)的x是计算上困难的(假设至少有这样一个x存在)。注意,不能将单向函数的概念与数学意义上的不可逆函数的概念混同,因为单向函数可能是一个数学意义上可逆或者一对一的函数,而一个不可逆函数却不一定是单向函数。
前面说过,单向函数不能直接用作密码体制,因为它的求逆困难,用它加密的信息谁都不能解密。但是,单向函数在密码学领域里却发挥着非常重要的作用。一个最简单的应用就是口令保护。我们熟知的口令保护方法是用对称加密算法进行加密。然而,对称算法加密一是必须有密钥,二是该密钥对验证口令的系统必须是可知的,因此意味着验证口令的系统总是可以获取口令的明文的。这样在口令的使用者与验证口令的系统之间存在严重的信息不对称,姑且不说系统提供者非法获取用户口令的情况,一旦系统被攻破,可能造成所有用户口令的泄露。使用单向函数对口令进行保护则可以很好地解决这一问题。系统方只存放口令经单向函数运算过的函数值,验证是将用户口令重新计算函数值与系统中存放的值进行比对。动态口令认证机制多是基于单向函数的应用来设计的。
单向函数的另一个应用是大家熟知的用于数字签名时产生信息摘要的单向散列函数。由于公钥密码体制的运算量往往比较大,为了避免对待签文件进行全文签名,一般在签名运算前使用单向散列算法对签名文件进行摘要处理,将待签文件压缩成一个分组之内的定长位串,以提高签名的效率。MD5和SHA-1就是两个曾被广泛使用的、具有单向函数性质的摘要算法。有些学者把现实中使用的密码算法分成三类,单向散列函数就是其中很重要的一类,另外两类分别是公开钥(或非对称、双钥)算法和秘密钥(或对称、单钥)算法。