Each case contains a number n and you are expected to calculate Fn.(0<=n<=30) 。
For each case, print a number Fn on a separate line,which means the nth Fibonacci Number.
1
1
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int[] dp = new int[30];
dp[0] = 0;
dp[1] = 1;
for (int i = 2; i < 30; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
int n = Integer.parseInt(br.readLine());
System.out.println(dp[n]);
}
} import java.util.ArrayList;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
//由于输入的n大小不确定,使用动态数组ArrayList
ArrayList<Integer> dp = new ArrayList<>();
dp.add(0);
dp.add(1);
for (int i = 2; i <= n; i++)
// 状态转移方程: dp[n]=dp[n-1]+dp[n-2]
dp.add(dp.get(i-1)+dp.get(i-2));
System.out.println(dp.get(n));
}
}
//这里是从0开始的,主要使用的迭代的思想实现
import java.util.Scanner;
public class Main
{
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int a = sc.nextInt();
System.out.println(add(a));
}
public static int add(int n)
{
if(n == 1 || n==0)
return n;
else
return add(n-1) + add(n-2);
}
}