Research Internship (PhD) -CR

薪资面议
博士
2025-05-06
 什么是官网闪投?
简历直投官网 无需重复填写简历 投后必反馈 进度实时更新 安全可靠官网可查 海量岗位5w+ 移动端投递方便

The Bosch-Tsinghua Collaboration Team (Beijing) is seeking a PhD Research Assistant to join our efforts at the forefront of AI for Science, Large Language Models (LLMs), and Generative AI. Our mission is to accelerate innovation across the industrial lifecycle—from physics simulation and scientific agents to rapid tooling and optimized production cycles—with real-world impact.

As a research assistant, you will:

  • Conduct cutting-edge research under expert mentorship
  • Propose and rapidly prototype novel ideas and implement solutions in core research areas
  • Publish in top-tier conferences (e.g., NeurIPS, ICML, ICLR, AAAI)
  • Explore topics including AI-assisted physics simulation, LLM agents for scientific discovery, and beyond

What we offer:

  • Access to high-performance GPU clusters
  • Opportunities to collaborate with leading experts in AI and science
  • Engagement in international research collaborations

We welcome creative, curious, and bold minds to join our team and help shape the future of scientific discovery through AI. 

Basic Qualifications

  • Currently pursuing a PhD in Computer Science, Artificial Intelligence, Mathematics, Physics, Engineering, or a related field.
  • Demonstrated experience in frontier research with publications at top-tier conferences in areas such as machine learning, AI for Science, foundation models, reinforcement learning, optimization, or statistics.
  • Proficiency in deep learning frameworks (e.g., PyTorch, TensorFlow) and programming languages including Python, C, or C++.
  • Strong engineering and software development skills, with experience in deep learning pipelines, GPU clusters, and distributed training of large-scale models.

 

Preferred Qualifications

  • First-author publications in top-tier peer-reviewed conferences or journals (e.g., NeurIPS, ICML, ICLR, AAAI).
  • Familiarity with large language model post-training techniques such as instruction tuning and reinforcement learning.
  • Experience with physics simulation tools (e.g., COMSOL, ANSYS, or similar) is a plus.

We're committed to creating an inclusive, welcoming workplace where everyone feels they belong. We provide equal opportunities for underrepresented groups and strongly encourage women and people from all backgrounds to apply.

 

博世-清华合作团队(北京)现面向全球招聘博士科研实习生,诚邀优秀人才加入我们,共同探索科学智能(AI for Science)、大型语言模型(LLMs)与生成式人工智能(Generative AI)等前沿领域。我们的使命是以人工智能赋能工业全生命周期的创新,涵盖物理仿真、科学智能体、快速工具链开发与生产流程优化,推动科技进步与产业变革。

职位职责:

  • 在资深导师指导下开展前沿科学研究;
  • 积极提出创新性研究方向,快速原型开发并实现关键技术方案;
  • 在国际顶级学术会议(如 NeurIPS、ICML、ICLR、AAAI)发表高水平研究成果;
  • 深入探索 AI 辅助物理仿真、基于大型语言模型的科学发现智能体等创新课题。

我们为您提供:

  • 充足的计算资源支持,包括高性能 GPU 集群;
  • 与全球顶尖 AI 与科学研究专家合作的机会;
  • 参与国际前沿科研项目,拓展学术与产业影响力。

我们期待富有创造力、好奇心与探索精神的您,与我们携手推动人工智能在科学领域的变革与应用!

基本要求:

  • 正在攻读计算机科学、机器学习、人工智能或相关领域的博士学位;
  • 在机器学习、科学智能、基座模型、强化学习、优化或统计等领域具备前沿研究经验,并在国际顶级会议上发表过论文;
  • 熟练掌握深度学习框架(如 PyTorch、TensorFlow)及编程语言(如 Python、C 或 C++);
  • 具备扎实的软件工程能力,有大规模深度学习系统开发、GPU 集群与分布式训练经验。

优先条件:

  • 作为第一作者在 NeurIPS、ICML、ICLR、AAAI 等顶级国际会议或期刊发表论文;
  • 熟悉大型语言模型后训练技术,如指令微调(Instruction Tuning)、强化学习 (Reinforcement Learning) 等;
  • 有物理仿真软件(如 COMSOL、ANSYS 、ABAQUS)使用经验者优先。


我们致力于构建多元包容的工作环境,平等欢迎所有背景的人士加入,尤其鼓励女性和弱势群体申请。