科大讯飞秋季校招开启啦!

【科大讯飞校园招聘】 内推链接:https://campus.iflytek.com/?refrenceCode=C18257Q,内推码:C18257Q。期待您的加入!(通过此链接投递计入内推,内推简历优先筛选~)

科大讯飞校园招聘已经开启,其中飞凡计划,飞星计划为高潜招聘,管理储备,经验之谈早投递早占hc,待遇可观。

科大讯飞招聘包括大模型,算法,软件开发测试,硬件,设计,产品等岗位,其中星火大模型为国内头部大模型之一,其训练平台为国内自主可控的国产平台,语音算法更是国内天花板;业务方向涉及教育,商业,医疗,司法,城市等多领域,具有很强的应用性。

base地包括合肥,武汉,广州,苏州,北京,成都,青岛,上海,西安等多地可供选择。

欢迎大家尽快投递哦(真的尽快,先投再说,别等到后边卡hc了,去年内推的同学就有被卡的),有相关问题可后台私信,包括查询面试状态。#内推##科大讯飞#
全部评论
谢谢 已用内推码
1 回复 分享
发布于 08-06 05:54 美国

相关推荐

今天老师为大家梳理了10道RAG大模型必备面试题,供各位同学参考。1️⃣Q1:如何评估RAG生成结果的质量?A1:① 事实准确性(Factual Accuracy):对比标准答案;② 引用精确度(Citation Precision):生成内容与引用文档的相关性;③ ROUGE/L等自动指标(需谨慎,可能与事实性脱钩)。2️⃣Q2:如何优化检索的召回率(Recall)?A2:① 使用Query扩展(同义词替换/LLM改写);② 多向量表示(HyDE生成假设文档再检索);③ 调整分块策略(重叠分块/多粒度分块)。3️⃣Q3:RAG如何处理多文档冲突信息?A3:①  让LLM总结共识点并标注分歧(提示词控制);② 按文档来源权威性加权(如医学指南>普通文章);  ③ 返回多视角答案(需明确说明冲突存在)。4️⃣Q4:如何解决“检索偏好”问题(Retrieval Bias)?A4:当检索结果质量差时强制生成会导致错误。解决方案:① 训练检索评估模块过滤低质结果;② 引入回退机制(如返回“无答案”);③ 迭代检索(Re-Rank或多轮检索)。5️⃣Q5:如何优化长文档检索效果?A5:① Small-to-Big检索:先检索小分块,再关联其所属大文档;② 层次检索:先定位章节,再章节内分块检索;③ 图结构:用知识图谱关联文档片段。6️⃣Q6:解释HyDE(Hypothetical Document Embeddings)原理?A6:让LLM根据Query生成假设性答案,将其作为“伪文档”嵌入向量,再用该向量检索真实文档。解决Query与文档表述差异问题。7️⃣Q7:什么是迭代检索(Iterative Retrieval)?A7:多轮检索:首轮检索结果输入LLM生成初步答案,再以该答案为新Query二次检索,循环直到满足条件。适合复杂推理场景。8️⃣Q8:Self-RAG的核心创新点是什么?A8:引入可学习检索信号:模型自主决定何时检索(Retrieve on Demand),并生成特殊Token(如[Retrieval]、[No Retrieval])控制流程。9️⃣Q9:RAG如何适配实时更新知识库A9:① 检索器使用近实时索引(如Elasticsearch增量更新);② 生成器无需重训,但需监控新数据分布偏移。1️⃣0️⃣Q10:用户查询“2025年诺贝尔奖获得者”,但知识库只更新到2024年,RAG如何应对?A10:设计策略:① 检索器返回最新文档(2024年);② 生成器明确回答“截至2024年数据,最新获得者为XX,2025年结果尚未公布”;③ 添加时间敏感性警告。🍊如果想参加高质量项目辅导,提升面试能力,欢迎后台联系。
点赞 评论 收藏
分享
评论
3
收藏
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务