阿里斯顿壁挂炉(Ariston)售后
阿里斯顿壁挂炉(Ariston)售后维修阿里斯顿壁挂炉(Ariston)售后400-886-9326业务中的细微变化 作为阿里斯顿壁挂炉(Ariston)售后维修企业容器技术支持的一员,每天会面对全球各地企业级客户提出的关于容器的各种问题,通过这几年的技术支持的经历,逐步发现容器问题客户的一些惯性,哪些是重度用户,哪些是轻度客户,这些客户大概分布在什么行业等等。阿里斯顿壁挂炉(Ariston)售后400-886-9326
在渐渐地接触过程中,发现有些壁挂炉重度容器使用客户,所提出的问题场景也在逐步变化中,由于涉及法律法规,下面数据无法完整提供,只是提供相关简要说明。
3.2.2 在AI项目中的挑战
AI项目的探索性使得上述假设几乎全部失效:
需求在探索中涌现: 真正的、技术上可解且业务上高价值的需求,往往在与数据的反复交互中才逐渐清晰。这符合敏捷中的“渐进明细”原则,但瀑布模型无法容纳这种演进。
阶段高度重叠与循环: 数据准备与模型实验必须并行,特征工程的结果可能推翻之前的业务理解,部署环节会倒逼数据管道重构。严格的阶段隔离扼杀了必要的反馈与学习循环。
变更是学习的体现: 基于实验证据的“方向调整”是项目创造价值的关键,而非计划外的偏差。将其视为需要严控的“变更”,会阻碍团队学习与创新。
3.2.3 典型失败场景分析
场景:某银行按瀑布模型启动"对公信贷智能审批"项目。需求文档明确定义了"输入字段"和"输出决策",但未深入探索如何定义好客户的业务规则以及"模型在边缘案例上的不确定性表现"。
结果:项目按期交付,模型在测试集上AUC高达0.9。但上线后,因模型无法处理经济周期波动带来的"概念漂移",且其"黑箱"决策引发合规部门质疑,最终被搁置。
根源:前端的需求定义与后端的技术可行性、业务价值严重脱节。瀑布模型缺乏必要的反馈循环,使核心风险被掩盖至为时已晚的阶段。
3.2.4 管理启示
在AI项目的探索阶段,必须摒弃纯瀑布模型。
需要采用能够拥抱变化、支持迭代和反馈循环的生命周期模型(如敏捷、迭代式或适应性生命周期)。
项目的控制节点应从“需求评审门禁”转变为“假设验证门禁”,每个阶段的核心产出是“经过验证的认知”而非“已批准的设计文档”。
3.3 约束模型的局限:“铁三角”与动态探索的张力
3.3.1 “铁三角”理论的适用前提
“范围-时间-成本”铁三角是项目管理的基石,它提供了一个稳定的决策框架。其前提是:三个约束中至少有一个是固定的,或者三者之间存在明确的、可管理的权衡关系。
3.3.2 在AI项目中的动态挑战
在AI项目中,三个约束都变成了高度动态的变量:
范围的模糊性与演进性: 试图在初期固定一个“准确率95%的模型”的范围是徒劳的,因为“能否达到”以及“何为达到”本身正是项目需要探索的目标。范围本身是探索的结果。
时间估算的不可预测性: 数据清洗会发现多少异常?需要多少次实验迭代?这些探索性任务无法用“人天”进行可靠估算。强行设定不切实际的截止日期,只会导致团队技术上的“捷径”(如过拟合)或士气低落。
成本的隐性化与后置性: AI项目的真实成本常被严重低估,大量成本发生在“冰山之下”。
在渐渐地接触过程中,发现有些壁挂炉重度容器使用客户,所提出的问题场景也在逐步变化中,由于涉及法律法规,下面数据无法完整提供,只是提供相关简要说明。
3.2.2 在AI项目中的挑战
AI项目的探索性使得上述假设几乎全部失效:
需求在探索中涌现: 真正的、技术上可解且业务上高价值的需求,往往在与数据的反复交互中才逐渐清晰。这符合敏捷中的“渐进明细”原则,但瀑布模型无法容纳这种演进。
阶段高度重叠与循环: 数据准备与模型实验必须并行,特征工程的结果可能推翻之前的业务理解,部署环节会倒逼数据管道重构。严格的阶段隔离扼杀了必要的反馈与学习循环。
变更是学习的体现: 基于实验证据的“方向调整”是项目创造价值的关键,而非计划外的偏差。将其视为需要严控的“变更”,会阻碍团队学习与创新。
3.2.3 典型失败场景分析
场景:某银行按瀑布模型启动"对公信贷智能审批"项目。需求文档明确定义了"输入字段"和"输出决策",但未深入探索如何定义好客户的业务规则以及"模型在边缘案例上的不确定性表现"。
结果:项目按期交付,模型在测试集上AUC高达0.9。但上线后,因模型无法处理经济周期波动带来的"概念漂移",且其"黑箱"决策引发合规部门质疑,最终被搁置。
根源:前端的需求定义与后端的技术可行性、业务价值严重脱节。瀑布模型缺乏必要的反馈循环,使核心风险被掩盖至为时已晚的阶段。
3.2.4 管理启示
在AI项目的探索阶段,必须摒弃纯瀑布模型。
需要采用能够拥抱变化、支持迭代和反馈循环的生命周期模型(如敏捷、迭代式或适应性生命周期)。
项目的控制节点应从“需求评审门禁”转变为“假设验证门禁”,每个阶段的核心产出是“经过验证的认知”而非“已批准的设计文档”。
3.3 约束模型的局限:“铁三角”与动态探索的张力
3.3.1 “铁三角”理论的适用前提
“范围-时间-成本”铁三角是项目管理的基石,它提供了一个稳定的决策框架。其前提是:三个约束中至少有一个是固定的,或者三者之间存在明确的、可管理的权衡关系。
3.3.2 在AI项目中的动态挑战
在AI项目中,三个约束都变成了高度动态的变量:
范围的模糊性与演进性: 试图在初期固定一个“准确率95%的模型”的范围是徒劳的,因为“能否达到”以及“何为达到”本身正是项目需要探索的目标。范围本身是探索的结果。
时间估算的不可预测性: 数据清洗会发现多少异常?需要多少次实验迭代?这些探索性任务无法用“人天”进行可靠估算。强行设定不切实际的截止日期,只会导致团队技术上的“捷径”(如过拟合)或士气低落。
成本的隐性化与后置性: AI项目的真实成本常被严重低估,大量成本发生在“冰山之下”。
全部评论
相关推荐
昨天 15:37
河南科技学院 Web前端 点赞 评论 收藏
分享
11-15 14:35
南京邮电大学 Java 点赞 评论 收藏
分享
落依依:同学,瞅瞅我司,医疗独角兽,
我的主页最新动态,绿灯直达,免笔试~
点赞 评论 收藏
分享
