Java 基础
Java基础
谈谈List集合ArrayList、和LinkedList异同?
是否保证线程安全。ArrayList和LinkedList都是不同步的,不保证线程安全。
底层数据结构。ArrayList是Object数组,LinkedList是双向循环链表。
插入和删除是否受元素位置影响。ArrayList会,LinkedList不会。
是否支持快速访问。LinkedList不支持,ArrayList实现了RandomAccess接口,所以支持。
内存空间。ArrayList需要预留一部分容量空间,LinkedList存更多的空间,包括前驱、后驱指针和数据
ArrayList与Vector区别?
Vector与ArrayList都是基于数组实现,Vector是线程安全的,效率比ArrayList低。
HashMap底层实现?
JDK1.7 数组+链表存储,线程不安全,Key和Value 允许为null。
HashMap的内部是一个数组,数组的每个元素都是一个单向链表,链表节点是Entry实例,Entry实例包含四个属性,Key、Value、hash值和指向下个元素的next指针。
JDK1.8 数组+链表/红黑树 在链表中的元素超过8个,链表会转成红黑树,以减少检索时间。链表的开销o(n) 红黑树开销o(logn)
HashMap的常用参数有哪些,怎么扩容的?
capacity:当前数组的容量,默认是16,扩容后数组的大小为当前的两倍
loadFactor:负载因子,默认为0.75
threshold:扩容的域值,其值为capacity* loadFactor,如果超过该阈值就触发扩容
ConcurrentHashMap为什么能保证线程安全?
1.7分段锁实现,Segment 均继承ReentrantLock并单独加锁,默认16个分段锁(初始化后不可更改)
ConcurrentHashMap的数据结构是分段锁对象列表+Entry数组+链表
用 Synchronized + CAS 代替 Segment ,这样锁的粒度更小了,并且不是每次都要加锁了,CAS尝试失败了在加锁。
1.8 Node + CAS + Synchronized+链表+红黑树
Node节点中Value修饰为volatile 内存可见
根据源码,put 方法
1:key value 不为空检验
2:计算Hashcode,如果Node数组为空就初始化,数组不为空,就用CAS的方法放入新值
3:如果Hash值等于MOVEN表示正在扩容(上面Node 那一段)
4:下面链表那一段(判断是链表还是红黑树)此处加锁如果是链表:如果已存在就覆盖,如果不存在就在尾部新增
5:如果现在是红黑树,就直接覆盖或新增,如果不是的话就转成红黑树的形式
Get方法:
1:计算Hash值,找到对应的槽点
2:如果是null,直接返回null
3:如果该节点是我们需要的,就直接返回null
4:如果该位置节点是红黑树或者正在扩容,就用find方法继续查找
5:否则就是链表,就进行遍历链表查找
设计成8阈值是考虑时间与空间的平衡,TreeNodes的占用空间是Node的两倍
谈谈Set集合?
Set集合都是不可重复的,适合存储无序且值不相等的对象。对象的相等本质上对象的HashCode值相同。
HashSetHashMap实现,无序,主要实现contains、add、remove、clear方法,根据元素的HashCode来存取元素(先比较HashCode再比较Equals)TreeSet二叉树实现,自定义数据类型必须实现Comparable接口,覆写compareTo函数LinkedHashSetLinkedHashMap存储对象,双向链表记录顺序
HashTable 和 ConcurrentHashMap的区别?
HashTable底层数组+链表,key与Value不能为空,线程安全,同时刻只能有1个线程写HashTabele,它的实现继承Dictionary类
ConcurrentHashMap 分段包裹的HashMap,Key与Value可以为空,线程安全,可以同时有16个写ConcurrentHashMap.读操作不加锁,因为Volatile保证变量最新。
ConcurrentHashMap 的方法1.7与1.8有什么不同?
Put 方法
1.7:两次hash(segment,HashEntry),如果没有权利put则不断自旋获取锁,超过64次挂起
1.8:先根据rehash值定位,拿到Node数组的首节点
如果为 null ,通过 CAS 的方式把 value put进去
如果 非null ,并且 first.hash == -1 ,说明其他线程在扩容,参与一起扩容
如果 非null ,并且 first.hash != -1 ,Synchronized锁住 first节点,判断是链表还是红黑树,遍历插入。
Get方法
JDK1.7与1.8类似
由于变量 value 是由 volatile 修饰的,java内存模型中的 happen before 规则保证了 对于 volatile 修饰的变量始终是 写操作 先于 读操作 的,并且还有 volatile 的 内存可见性 保证修改完的数据可以马上更新到主存中,所以能保证在并发情况下,读出来的数据是最新的数据。 如果get()到的是null值才去加锁。
HashMap 和HashSet的区别?
拉链法导致的链表过深问题为什么不用二叉查找树代替,而选择红黑树?为什么不一直使用红黑树?
之所以选择红黑树是为了解决二叉查找树的缺陷,二叉查找树在特殊情况下会变成一条线性结构(这就跟原来
使用链表结构一样了,造成很深的问题),遍历查找会非常慢。
而红黑树在插入新数据后可能需要通过左旋,右旋、变色这些操作来保持平衡,引入红黑树就是为了查找数据
块,解决链表查询深度的问题,我们知道红黑树属于平衡二叉树,但是为了保持“平衡”是需要付出代价的,但是该
代价所损耗的资源要比遍历线性链表要少,所以当长度大于 8 的时候,会使用红黑树,如果链表长度很短的话,根
本不需要引入红黑树,引入反而会慢。
finally块是否一定执行?
try-catch-finally块中,finally块在以下几种情况将不会执行。
(1)finally块中发生了异常。
(2)程序所在线程死亡。
(3)在前面的代码中用了System.exit();
(4)关闭了CPU
除了这些之外,finally是无论是否抛出异常必定执行的语句
HashCode,Equals 相等是否就说明对象相等?
equals()相等的两个对象他们的hashCode()肯定相等,也就是用equals()对比是绝对可靠的。
hashCode()相等的两个对象他们的equal()不一定相等,也就是hashCode()不是绝对可靠的。
Java的优点?
面向对象、平台无关性、内置类库、支持Web开发、较好的安全性和健壮性、程序严谨、简洁
Java程序初始化顺序是怎样的?
静态对象优先于非静态对象、静态对象只初始化一次
父类优于子类初始化
按成员变量定义顺序初始化
具体是:父类静态变量、父类静态代码块、子类静态变量、子类静态代码块、父类非静态变量、非静态代码块、父类构造函数、子类非静态变量
、子类非静态代码块、子类构造函数。
Java的中类有哪些成员,这些成员可以有哪些修饰符?
变量、构造方法(构造器)、普通方法、初始化块和内部类
接口是一种特殊的抽象类(只能public修饰),包含方法的定义和常量(默认 public static final)
什么是构造函数?
必须与类名词相同,且不能有返回值
每个类可以有多个构造函数、且可以有0~N个参数
用来初始化对象
不能被覆盖、能够被重载,方法名称相同,参数列表不同(可以是参数的类型,个数,顺序不同)
子类可以通过Super方法显示调用父类的构造函数,当父类没有提供无参的构造函数,必须使用Super 显示调用父类构造函数
构造函数在对象被new的时候执行
深拷贝 VS浅拷贝
对于基本类型,深拷贝、浅拷贝都是一样的,对引用类型
深拷贝:创建一个新对象,然后将当前对象的非静态字段复制到该新对象,无论该字段是值类型的还是引用类型,都复制独立的一份。当你修改其中一个对象的任何内容时,都不会影响另一个对象的内容,通过反序列化实现
浅拷贝:调用对象的 clone 方法,必须要让类实现 Cloneable 接口,并且覆写 clone 方法,只复制对象的引用,指向同一个对象
什么是反射?
反射是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法;对于任意一个对象,都能够调用它的任意一个方法和属性;这种动态获取的信息以及动态调用对象的方法的功能称为 Java 语言的反射机制。可以在运行时动态地创建类的对象。
Java中创建对象的四种方法?
通过New创建
通过反射创建
通过Clone方法创建(浅拷贝)
通过反序列化创建(深拷贝)
Java并发
1、在 java 中守护线程和本地线程区别?
java 中的线程分为两种:守护线程(Daemon)和用户线程(User)。
任何线程都可以设置为守护线程和用户线程,通过方法 Thread.setDaemon(boolon);true 则把该线程设置为守护线程,反之则为用户线程。Thread.setDaemon()必须在 Thread.start()之前调用,否则运行时会抛出异常。
两者的区别:
唯一的区别是判断虚拟机(JVM)何时离开,Daemon 是为其他线程提供服务,如果全部的 User Thread 已经撤离,Daemon 没有可服务的线程,JVM 撤离。也可以理解为守护线程是 JVM 自动创建的线程(但不一定),用户线程是程序创建的线程;比如 JVM 的垃圾回收线程是一个守护线程,当所有线程已经撤离,不再产生垃圾,守护线程自然就没事可干了,当垃圾回收线程是 Java 虚拟机上仅剩的线程时,Java 虚拟机会自动离开。
扩展:Thread Dump 打印出来的线程信息,含有 daemon 字样的线程即为守护进程,可能会有:服务守护进程、编译守护进程、windows 下的监听 Ctrl+break的守护进程、Finalizer 守护进程、引用处理守护进程、GC 守护进程。
2、线程与进程的区别?
进程是操作系统分配资源的最小单元,线程是操作系统调度的最小单元。
一个程序至少有一个进程,一个进程至少有一个线程。
3、什么是多线程中的上下文切换?
多线程会共同使用一组计算机上的 CPU,而线程数大于给程序分配的 CPU 数量时,为了让各个线程都有执行的机会,就需要轮转使用 CPU。不同的线程切换使用 CPU发生的切换数据等就是上下文切换。
6、什么是线程组,为什么在 Java 中不推荐使用?
ThreadGroup 类,可以把线程归属到某一个线程组中,线程组中可以有线程对象,也可以有线程组,组中还可以有线程,这样的组织结构有点类似于树的形式。
为什么不推荐使用?因为使用有很多的安全隐患吧,没有具体追究,如果需要使用,推荐使用线程池。
7、为什么使用 Executor 框架?
每次执行任务创建线程 new Thread()比较消耗性能,创建一个线程是比较耗时、耗资源的。
调用 new Thread()创建的线程缺乏管理,被称为野线程,而且可以无限制的创建,线程之间的相互竞争会导致过多占用系统资源而导致系统瘫痪,还有线程之间的频繁交替也会消耗很多系统资源。
接使用 new Thread() 启动的线程不利于扩展,比如定时执行、定期执行、定时定期执行、线程中断等都不便实现。
8、在 Java 中 Executor 和 Executors 的区别?
Executors 工具类的不同方法按照我们的需求创建了不同的线程池,来满足业务的需求。
Executor 接口对象能执行我们的线程任务。
ExecutorService 接口继承了 Executor 接口并进行了扩展,提供了更多的方法我们能获得任务执行的状态并且可以获取任务的返回值。
使用 ThreadPoolExecutor 可以创建自定义线程池。
Future 表示异步计算的结果,他提供了检查计算是否完成的方法,以等待计算的完成,并可以使用 get()方法获取计算的结果。
9、如何在 Windows 和 Linux 上查找哪个线程使用的 CPU 时间最长?
10、什么是原子操作?在 Java Concurrency API 中有哪些原子类(atomic classes)?
原子操作(atomic operation)意为”不可被中断的一个或一系列操作” 。
处理器使用基于对缓存加锁或总线加锁的方式来实现多处理器之间的原子操作。在 Java 中可以通过锁和循环 CAS 的方式来实现原子操作。CAS 操作——Compare & Set,或是 Compare & Swap,现在几乎所有的 CPU 指令都支持 CAS的原子操作。
原子操作是指一个不受其他操作影响的操作任务单元。原子操作是在多线程环境下避免数据不一致必须的手段。
int++并不是一个原子操作,所以当一个线程读取它的值并加 1 时,另外一个线程有可能会读到之前的值,这就会引发错误。
为了解决这个问题,必须保证增加操作是原子的,在 JDK1.5 之前我们可以使用同步技术来做到这一点。到 JDK1.5,java.util.concurrent.atomic 包提供了 int 和long 类型的原子包装类,它们可以自动的保证对于他们的操作是原子的并且不需要使用同步。
java.util.concurrent 这个包里面提供了一组原子类。其基本的特性就是在多线程环境下,当有多个线程同时执行这些类的实例包含的方法时,具有排他性,即当某个线程进入方法,执行其中的指令时,不会被其他线程打断,而别的线程就像自旋锁一样,一直等到该方法执行完成,才由 JVM 从等待队列中选择一个另一个线程进入,这只是一种逻辑上的理解。
原子类:AtomicBoolean,AtomicInteger,AtomicLong,AtomicReference
原子数组:AtomicIntegerArray,AtomicLongArray,AtomicReferenceArray
原子属性更新器:AtomicLongFieldUpdater,AtomicIntegerFieldUpdater,AtomicReferenceFieldUpdater
解决 ABA 问题的原子类:AtomicMarkableReference(通过引入一个 boolean来反映有没有被删除),AtomicStampedReference(通过引入一个 int 来累加来反映中间有没有变过)
11、Java Concurrency API 中的 Lock 接口(Lock interface)是什么?对比同步它有什么优势?
Lock 接口比同步方法和同步块提供了更具扩展性的锁操作。
他们允许更灵活的结构,可以具有完全不同的性质,并且可以支持多个相关类的条件对象。
它的优势有:
可以使锁更公平
可以使线程在等待锁的时候响应中断
可以让线程尝试获取锁,并在无法获取锁的时候立即返回或者等待一段时间
可以在不同的范围,以不同的顺序获取和释放锁
整体上来说 Lock 是 synchronized 的扩展版,Lock 提供了无条件的、可轮询的(tryLock 方法)、定时的(tryLock 带参方法)、可中断的(lockInterruptibly)、可多条件队列的(newCondition 方法)锁操作。另外 Lock 的实现类基本都支持非公平锁(默认)和公平锁,synchronized 只支持非公平锁,当然,在大部分情况下,非公平锁是高效的选择。
12、什么是 Executors 框架?
Executor 框架是一个根据一组执行策略调用,调度,执行和控制的异步任务的框架。
无限制的创建线程会引起应用程序内存溢出。所以创建一个线程池是个更好的的解决方案,因为可以限制线程的数量并且可以回收再利用这些线程。利用Executors 框架可以非常方便的创建一个线程池。
13、什么是阻塞队列?阻塞队列的实现原理是什么?如何使用阻塞队列来实现生产者-消费者模型?
阻塞队列(BlockingQueue)是一个支持两个附加操作的队列。
这两个附加的操作是:在队列为空时,获取元素的线程会等待队列变为非空。当队列满时,存储元素的线程会等待队列可用。
阻塞队列常用于生产者和消费者的场景,生产者是往队列里添加元素的线程,消费者是从队列里拿元素的线程。阻塞队列就是生产者存放元素的容器,而消费者也只从容器里拿元素。
JDK7 提供了 7 个阻塞队列。分别是:
ArrayBlockingQueue :一个由数组结构组成的有界阻塞队列。
LinkedBlockingQueue :一个由链表结构组成的有界阻塞队列。
PriorityBlockingQueue :一个支持优先级排序的无界阻塞队列。
DelayQueue:一个使用优先级队列实现的无界阻塞队列。
SynchronousQueue:一个不存储元素的阻塞队列。
LinkedTransferQueue:一个由链表结构组成的无界阻塞队列。
LinkedBlockingDeque:一个由链表结构组成的双向阻塞队列。
Java 5 之前实现同步存取时,可以使用普通的一个集合,然后在使用线程的协作和线程同步可以实现生产者,消费者模式,主要的技术就是用好,wait ,notify,notifyAll,sychronized 这些关键字。而在 java 5 之后,可以使用阻塞队列来实现,此方式大大简少了代码量,使得多线程编程更加容易,安全方面也有保障。
BlockingQueue 接口是 Queue 的子接口,它的主要用途并不是作为容器,而是作为线程同步的的工具,因此他具有一个很明显的特性,当生产者线程试图向BlockingQueue 放入元素时,如果队列已满,则线程被阻塞,当消费者线程试图从中取出一个元素时,如果队列为空,则该线程会被阻塞,正是因为它所具有这个特性,所以在程序中多个线程交替向 BlockingQueue 中放入元素,取出元素,它可以很好的控制线程之间的通信。
阻塞队列使用最经典的场景就是 socket 客户端数据的读取和解析,读取数据的线程不断将数据放入队列,然后解析线程不断从队列取数据解析。
14、什么是 Callable 和 Future?
Callable 接口类似于 Runnable,从名字就可以看出来了,但是 Runnable 不会返回结果,并且无法抛出返回结果的异常,而 Callable 功能更强大一些,被线程执行后,可以返回值,这个返回值可以被 Future 拿到,也就是说,Future 可以拿到异步执行任务的返回值。
可以认为是带有回调的 Runnable。
Future 接口表示异步任务,是还没有完成的任务给出的未来结果。所以说 Callable用于产生结果,Future 用于获取结果。
15、什么是 FutureTask?使用 ExecutorService 启动任务。
在 Java 并发程序中 FutureTask 表示一个可以取消的异步运算。它有启动和取消运算、查询运算是否完成和取回运算结果等方法。只有当运算完成的时候结果才能取回,如果运算尚未完成 get 方法将会阻塞。一个 FutureTask 对象可以对调用了 Callable 和 Runnable 的对象进行包装,由于 FutureTask 也是调用了 Runnable接口所以它可以提交给 Executor 来执行。
16、什么是并发容器的实现?
何为同步容器:可以简单地理解为通过 synchronized 来实现同步的容器,如果有多个线程调用同步容器的方法,它们将会串行执行。比如 Vector,Hashtable,以及 Collections.synchronizedSet,synchronizedList 等方法返回的容器。可以通过查看 Vector,Hashtable 等这些同步容器的实现代码,可以看到这些容器实现线程安全的方式就是将它们的状态封装起来,并在需要同步的方法上加上关键字 synchronized。
并发容器使用了与同步容器完全不同的加锁策略来提供更高的并发性和伸缩性,例如在 ConcurrentHashMap 中采用了一种粒度更细的加锁机制,可以称为分段锁,在这种锁机制下,允许任意数量的读线程并发地访问 map,并且执行读操作的线程和写操作的线程也可以并发的访问 map,同时允许一定数量的写操作线程并发地修改 map,所以它可以在并发环境下实现更高的吞吐量。
17、多线程同步和互斥有几种实现方法,都是什么?
线程同步是指线程之间所具有的一种制约关系,一个线程的执行依赖另一个线程的消息,当它没有得到另一个线程的消息时应等待,直到消息到达时才被唤醒。线程互斥是指对于共享的进程系统资源,在各单个线程访问时的排它性。当有若干个线程都要使用某一共享资源时,任何时刻最多只允许一个线程去使用,其它要使用该资源的线程必须等待,直到占用资源者释放该资源。线程互斥可以看成是一种特殊的线程同步。
线程间的同步方法大体可分为两类:用户模式和内核模式。顾名思义,内核模式就是指利用系统内核对象的单一性来进行同步,使用时需要切换内核态与用户态,而用户模式就是不需要切换到内核态,只在用户态完成操作。
用户模式下的方法有:原子操作(例如一个单一的全局变量),临界区。内核模式下的方法有:事件,信号量,互斥量。
18、什么是竞争条件?你怎样发现和解决竞争?
当多个进程都企图对共享数据进行某种处理,而最后的结果又取决于进程运行的顺序时,则我们认为这发生了竞争条件(race condition)。
19、你将如何使用 thread dump?你将如何分析 Thread dump?
新建状态(New)
用 new 语句创建的线程处于新建状态,此时它和其他 Java 对象一样,仅仅在堆区中被分配了内存。
就绪状态(Runnable)
当一个线程对象创建后,其他线程调用它的 start()方法,该线程就进入就绪状态,Java 虚拟机会为它创建方法调用栈和程序计数器。处于这个状态的线程位于可运行池中,等待获得 CPU 的使用权。
运行状态(Running)
处于这个状态的线程占用 CPU,执行程序代码。只有处于就绪状态的线程才有机会转到运行状态。
阻塞状态(Blocked)
阻塞状态是指线程因为某些原因放弃 CPU,暂时停止运行。当线程处于阻塞状态时,Java 虚拟机不会给线程分配 CPU。直到线程重新进入就绪状态,它才有机会转到运行状态。
阻塞状态可分为以下 3 种:
位于对象等待池中的阻塞状态(Blocked in object’s wait pool):
当线程处于运行状态时,如果执行了某个对象的 wait()方法,Java 虚拟机就会把线程放到这个对象的等待池中,这涉及到“线程通信”的内容。
位于对象锁池中的阻塞状态(Blocked in object’s lock pool):
当线程处于运行状态时,试图获得某个对象的同步锁时,如果该对象的同步锁已经被其他线程占用,Java 虚拟机就会把这个线程放到这个对象的锁池中,这涉及到“线程同步”的内容。
其他阻塞状态(Otherwise Blocked):
当前线程执行了 sleep()方法,或者调用了其他线程的 join()方法,或者发出了 I/O请求时,就会进入这个状态。
死亡状态(Dead)
当线程退出 run()方法时,就进入死亡状态,该线程结束生命周期。
20、为什么我们调用 start()方法时会执行 run()方法,为什么我们不能直接调用 run()方法?
当你调用 start()方法时你将创建新的线程,并且执行在 run()方法里的代码。
但是如果你直接调用 run()方法,它不会创建新的线程也不会执行调用线程的代码,只会把 run 方法当作普通方法去执行。
21、Java 中你怎样唤醒一个阻塞的线程?
在 Java 发展史上曾经使用 suspend()、resume()方法对于线程进行阻塞唤醒,但随之出现很多问题,比较典型的还是死锁问题。
解决方案可以使用以对象为目标的阻塞,即利用 Object 类的 wait()和 notify()方法实现线程阻塞。
首 先 ,wait、notify 方法是针对对象的,调用任意对象的 wait()方法都将导致线程阻塞,阻塞的同时也将释放该对象的锁,相应地,调用任意对象的 notify()方法则将随机解除该对象阻塞的线程,但它需要重新获取改对象的锁,直到获取成功才能往下执行;其次,wait、notify 方法必须在 synchronized 块或方法中被调用,并且要保证同步块或方法的锁对象与调用 wait、notify 方法的对象是同一个,如此一来在调用 wait 之前当前线程就已经成功获取某对象的锁,执行 wait 阻塞后当前线程就将之前获取的对象锁释放。
22、在 Java 中 CycliBarriar 和 CountdownLatch 有什么区别?
CyclicBarrier 可以重复使用,而 CountdownLatch 不能重复使用。
Java 的 concurrent 包里面的 CountDownLatch 其实可以把它看作一个计数器,只不过这个计数器的操作是原子操作,同时只能有一个线程去操作这个计数器,也就是同时只能有一个线程去减这个计数器里面的值。你可以向 CountDownLatch 对象设置一个初始的数字作为计数值,任何调用这个对象上的 await()方法都会阻塞,直到这个计数器的计数值被其他的线程减为 0 为止。
所以在当前计数到达零之前,await 方***一直受阻塞。之后,会释放所有等待的线程,await 的所有后续调用都将立即返回。这种现象只出现一次——计数无法被重置。如果需要重置计数,请考虑使用 CyclicBarrier。CountDownLatch 的一个非常典型的应用场景是:有一个任务想要往下执行,但必须要等到其他的任务执行完毕后才可以继续往下执行。假如我们这个想要继续往下执行的任务调用一个 CountDownLatch 对象的 await()方法,其他的任务执行完自己的任务后调用同一个 CountDownLatch 对象上的 countDown()方法,这个调用 await()方法的任务将一直阻塞等待,直到这个 CountDownLatch 对象的计数值减到 0 为止。
CyclicBarrier 一个同步辅助类,它允许一组线程互相等待,直到到达某个公共屏障点 (common barrier point)。在涉及一组固定大小的线程的程序中,这些线程必须不时地互相等待,此时 CyclicBarrier 很有用。因为该 barrier 在释放等待线程后可以重用,所以称它为循环 的 barrier。
23、什么是不可变对象,它对写并发应用有什么帮助?
不可变对象(Immutable Objects)即对象一旦被创建它的状态(对象的数据,也即对象属性值)就不能改变,反之即为可变对象(Mutable Objects)。
不可变对象的类即为不可变类(Immutable Class)。Java 平台类库中包含许多不可变类,如 String、基本类型的包装类、BigInteger 和 BigDecimal 等。
不可变对象天生是线程安全的。它们的常量(域)是在构造函数中创建的。既然它们的状态无法修改,这些常量永远不会变。
不可变对象永远是线程安全的。
只有满足如下状态,一个对象才是不可变的;
它的状态不能在创建后再被修改;
所有域都是 final 类型;并且,它被正确创建(创建期间没有发生 this 引用的逸出)。
24、什么是多线程中的上下文切换?
在上下文切换过程中,CPU 会停止处理当前运行的程序,并保存当前程序运行的具***置以便之后继续运行。从这个角度来看,上下文切换有点像我们同时阅读几本书,在来回切换书本的同时我们需要记住每本书当前读到的页码。在程序中,上下文切换过程中的“页码”信息是保存在进程控制块(PCB)中的。PCB 还经常被称作“切换桢”(switchframe)。“页码”信息会一直保存到 CPU 的内存中,直到他们被再次使用。
上下文切换是存储和恢复 CPU 状态的过程,它使得线程执行能够从中断点恢复执行。上下文切换是多任务操作系统和多线程环境的基本特征。
25、Java 中用到的线程调度算法是什么?
计算机通常只有一个 CPU,在任意时刻只能执行一条机器指令,每个线程只有获得CPU 的使用权才能执行指令.所谓多线程的并发运行,其实是指从宏观上看,各个线程轮流获得 CPU 的使用权,分别执行各自的任务.在运行池中,会有多个处于就绪状态的线程在等待 CPU,JAVA 虚拟机的一项任务就是负责线程的调度,线程调度是指按照特定机制为多个线程分配 CPU 的使用权.
有两种调度模型:分时调度模型和抢占式调度模型。
分时调度模型是指让所有的线程轮流获得 cpu 的使用权,并且平均分配每个线程占用的 CPU 的时间片这个也比较好理解。
Java虚拟机采用抢占式调度模型,是指优先让可运行池中优先级高的线程占用CPU,如果可运行池中的线程优先级相同,那么就随机选择一个线程,使其占用CPU。处于运行状态的线程会一直运行,直至它不得不放弃 CPU。
26、什么是线程组,为什么在 Java 中不推荐使用?
线程组和线程池是两个不同的概念,他们的作用完全不同,前者是为了方便线程的管理,后者是为了管理线程的生命周期,复用线程,减少创建销毁线程的开销。
27、为什么使用 Executor 框架比使用应用创建和管理线程好?
为什么要使用 Executor 线程池框架
1、每次执行任务创建线程 new Thread()比较消耗性能,创建一个线程是比较耗时、耗资源的。
2、调用 new Thread()创建的线程缺乏管理,被称为野线程,而且可以无限制的创建,线程之间的相互竞争会导致过多占用系统资源而导致系统瘫痪,还有线程之间的频繁交替也会消耗很多系统资源。
3、直接使用 new Thread() 启动的线程不利于扩展,比如定时执行、定期执行、定时定期执行、线程中断等都不便实现。
使用 Executor 线程池框架的优点
1、能复用已存在并空闲的线程从而减少线程对象的创建从而减少了消亡线程的开销。
2、可有效控制最大并发线程数,提高系统资源使用率,同时避免过多资源竞争。
3、框架中已经有定时、定期、单线程、并发数控制等功能。
综上所述使用线程池框架 Executor 能更好的管理线程、提供系统资源使用率。
28、java 中有几种方法可以实现一个线程?
继承 Thread 类
实现 Runnable 接口
实现 Callable 接口,需要实现的是 call() 方法
29、如何停止一个正在运行的线程?
使用共享变量的方式
在这种方式中,之所以引入共享变量,是因为该变量可以被多个执行相同任务的线程用来作为是否中断的信号,通知中断线程的执行。
使用 interrupt 方法终止线程
如果一个线程由于等待某些事件的发生而被阻塞,又该怎样停止该线程呢?这种情况经常会发生,比如当一个线程由于需要等候键盘输入而被阻塞,或者调用Thread.join()方法,或者 Thread.sleep()方法,在网络中调用ServerSocket.accept()方法,或者调用了 DatagramSocket.receive()方法时,都有可能导致线程阻塞,使线程处于处于不可运行状态时,即使主程序中将该线程的共享变量设置为 true,但该线程此时根本无法检查循环标志,当然也就无法立即中断。这里我们给出的建议是,不要使用 stop()方法,而是使用 Thread 提供的interrupt()方法,因为该方法虽然不会中断一个正在运行的线程,但是它可以使一个被阻塞的线程抛出一个中断异常,从而使线程提前结束阻塞状态,退出堵塞代码。
30、notify()和 notifyAll()有什么区别?
当一个线程进入 wait 之后,就必须等其他线程 notify/notifyall,使用 notifyall,可以唤醒所有处于 wait 状态的线程,使其重新进入锁的争夺队列中,而 notify 只能唤醒一个。
如果没把握,建议 notifyAll,防止 notigy 因为信号丢失而造成程序异常。
31、什么是 Daemon 线程?它有什么意义?
所谓后台(daemon)线程,是指在程序运行的时候在后台提供一种通用服务的线程,并且这个线程并不属于程序中不可或缺的部分。因此,当所有的非后台线程结束时,程序也就终止了,同时会杀死进程中的所有后台线程。反过来说,只要有任何非后台线程还在运行,程序就不会终止。必须在线程启动之前调用setDaemon()方法,才能把它设置为后台线程。注意:后台进程在不执行 finally子句的情况下就会终止其 run()方法。
比如:JVM 的垃圾回收线程就是 Daemon 线程,Finalizer 也是守护线程。
32、java 如何实现多线程之间的通讯和协作?
中断 和 共享变量
33、什么是可重入锁(ReentrantLock)?
举例来说明锁的可重入性
public class UnReentrant{ Lock lock = new Lock(); public void outer(){ lock.lock(); inner(); lock.unlock(); } public void inner(){ lock.lock(); //do something lock.unlock(); }}
outer 中调用了 inner,outer 先锁住了 lock,这样 inner 就不能再获取 lock。其实调用 outer 的线程已经获取了 lock 锁,但是不能在 inner 中重复利用已经获取的锁资源,这种锁即称之为 不可重入可重入就意味着:线程可以进入任何一个它已经拥有的锁所同步着的代码块。
synchronized、ReentrantLock 都是可重入的锁,可重入锁相对来说简化了并发编程的开发。
34、当一个线程进入某个对象的一个 synchronized 的实例方法后,其它线程是否可进入此对象的其它方法?
如果其他方法没有 synchronized 的话,其他线程是可以进入的。
所以要开放一个线程安全的对象时,得保证每个方法都是线程安全的。
35、乐观锁和悲观锁的理解及如何实现,有哪些实现方式?
悲观锁:总是假设最坏的情况,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会阻塞直到它拿到锁。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。再比如 Java 里面的同步原语 synchronized 关键字的实现也是悲观锁。
乐观锁:顾名思义,就是很乐观,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号等机制。乐观锁适用于多读的应用类型,这样可以提高吞吐量,像数据库提供的类似于 write_condition 机制,其实都是提供的乐观锁。在 Java中 java.util.concurrent.atomic 包下面的原子变量类就是使用了乐观锁的一种实现方式 CAS 实现的。
乐观锁的实现方式:
1、使用版本标识来确定读到的数据与提交时的数据是否一致。提交后修改版本标识,不一致时可以采取丢弃和再次尝试的策略。
2、java 中的 Compare and Swap 即 CAS ,当多个线程尝试使用 CAS 同时更新同一个变量时,只有其中一个线程能更新变量的值,而其它线程都失败,失败的线程并不会被挂起,而是被告知这次竞争中失败,并可以再次尝试。CAS 操作中包含三个操作数 —— 需要读写的内存位置(V)、进行比较的预期原值(A)和拟写入的新值(B)。如果内存位置 V 的值与预期原值 A 相匹配,那么处理器会自动将该位置值更新为新值 B。否则处理器不做任何操作。
CAS 缺点:
1、ABA 问题:
比如说一个线程 one 从内存位置 V 中取出 A,这时候另一个线程 two 也从内存中取出 A,并且 two 进行了一些操作变成了 B,然后 two 又将 V 位置的数据变成 A,这时候线程 one 进行 CAS 操作发现内存中仍然是 A,然后 one 操作成功。尽管线程 one 的 CAS 操作成功,但可能存在潜藏的问题。从 Java1.5 开始 JDK 的 atomic包里提供了一个类 AtomicStampedReference 来解决 ABA 问题。
2、循环时间长开销大:
对于资源竞争严重(线程冲突严重)的情况,CAS 自旋的概率会比较大,从而浪费更多的 CPU 资源,效率低于 synchronized。
3、只能保证一个共享变量的原子操作:
当对一个共享变量执行操作时,我们可以使用循环 CAS 的方式来保证原子操作,但是对多个共享变量操作时,循环 CAS 就无法保证操作的原子性,这个时候就可以用锁。
36、SynchronizedMap 和 ConcurrentHashMap 有什么区别?
SynchronizedMap 一次锁住整张表来保证线程安全,所以每次只能有一个线程来访为 map。
ConcurrentHashMap 使用分段锁来保证在多线程下的性能。
ConcurrentHashMap 中则是一次锁住一个桶。ConcurrentHashMap 默认将hash 表分为 16 个桶,诸如 get,put,remove 等常用操作只锁当前需要用到的桶。
这样,原来只能一个线程进入,现在却能同时有 16 个写线程执行,并发性能的提升是显而易见的。
另外 ConcurrentHashMap 使用了一种不同的迭代方式。在这种迭代方式中,当iterator 被创建后集合再发生改变就不再是抛出
ConcurrentModificationException,取而代之的是在改变时 new 新的数据从而不影响原有的数据 ,iterator 完成后再将头指针替换为新的数据 ,这样 iterator线程可以使用原来老的数据,而写线程也可以并发的完成改变。
37、CopyOnWriteArrayList 可以用于什么应用场景?
CopyOnWriteArrayList(免锁容器)的好处之一是当多个迭代器同时遍历和修改这个列表时,不会抛出 ConcurrentModificationException。在CopyOnWriteArrayList 中,写入将导致创建整个底层数组的副本,而源数组将保留在原地,使得复制的数组在被修改时,读取操作可以安全地执行。
1、由于写操作的时候,需要拷贝数组,会消耗内存,如果原数组的内容比较多的情况下,可能导致 young gc 或者 full gc;
2、不能用于实时读的场景,像拷贝数组、新增元素都需要时间,所以调用一个 set操作后,读取到数据可能还是旧的,虽然 CopyOnWriteArrayList 能做到最终一致性,但是还是没法满足实时性要求;
CopyOnWriteArrayList 透露的思想
1、读写分离,读和写分开
2、最终一致性
3、使用另外开辟空间的思路,来解决并发冲突
38、什么叫线程安全?servlet 是线程安全吗?
线程安全是编程中的术语,指某个函数、函数库在多线程环境中被调用时,能够正确地处理多个线程之间的共享变量,使程序功能正确完成。
Servlet 不是线程安全的,servlet 是单实例多线程的,当多个线程同时访问同一个方法,是不能保证共享变量的线程安全性的。
Struts2 的 action 是多实例多线程的,是线程安全的,每个请求过来都会 new 一个新的 action 分配给这个请求,请求完成后销毁。
SpringMVC 的 Controller 是线程安全的吗?不是的,和 Servlet 类似的处理流程。
Struts2 好处是不用考虑线程安全问题;Servlet 和 SpringMVC 需要考虑线程安全问题,但是性能可以提升不用处理太多的 gc,可以使用 ThreadLocal 来处理多线程的问题。
39、volatile 有什么用?能否用一句话说明下 volatile 的应用场景?
volatile 保证内存可见性和禁止指令重排。
volatile 用于多线程环境下的单次操作(单次读或者单次写)。
40、为什么代码会重排序?
在执行程序时,为了提供性能,处理器和编译器常常会对指令进行重排序,但是不能随意重排序,不是你想怎么排序就怎么排序,它需要满足以下两个条件:
在单线程环境下不能改变程序运行的结果;
存在数据依赖关系的不允许重排序
需要注意的是:重排序不会影响单线程环境的执行结果,但是会破坏多线程的执行语义。
41、在 java 中 wait 和 sleep 方法的不同?
最大的不同是在等待时 wait 会释放锁,而 sleep 一直持有锁。Wait 通常被用于线程间交互,sleep 通常被用于暂停执行。
42、用 Java 实现阻塞队列
43、一个线程运行时发生异常会怎样?
如果异常没有被捕获该线程将会停止执行。Thread.UncaughtExceptionHandler是用于处理未捕获异常造成线程突然中断情况的一个内嵌接口。当一个未捕获异常将造成线程中断的时候 JVM 会使用 Thread.getUncaughtExceptionHandler()来查询线程的 UncaughtExceptionHandler 并将线程和异常作为参数传递给handler 的 uncaughtException()方法进行处理。
44、如何在两个线程间共享数据?
在两个线程间共享变量即可实现共享。
一般来说,共享变量要求变量本身是线程安全的,然后在线程内使用的时候,如果有对共享变量的复合操作,那么也得保证复合操作的线程安全性。
45、Java 中 notify 和 notifyAll 有什么区别?
notify() 方法不能唤醒某个具体的线程,所以只有一个线程在等待的时候它才有用武之地。而 notifyAll()唤醒所有线程并允许他们争夺锁确保了至少有一个线程能继续运行。
46、为什么 wait, notify 和 notifyAll 这些方法不在 thread类里面?
一个很明显的原因是 JAVA 提供的锁是对象级的而不是线程级的,每个对象都有锁,通过线程获得。由于 wait,notify 和 notifyAll 都是锁级别的操作,所以把他们定义在 Object 类中因为锁属于对象。
47、什么是 ThreadLocal 变量?
ThreadLocal 是 Java 里一种特殊的变量。每个线程都有一个 ThreadLocal 就是每个线程都拥有了自己独立的一个变量,竞争条件被彻底消除了。它是为创建代价高昂的对象获取线程安全的好方法,比如你可以用 ThreadLocal 让SimpleDateFormat 变成线程安全的,因为那个类创建代价高昂且每次调用都需要创建不同的实例所以不值得在局部范围使用它,如果为每个线程提供一个自己独有的变量拷贝,将大大提高效率。首先,通过复用减少了代价高昂的对象的创建个数。其次,你在没有使用高代价的同步或者不变性的情况下获得了线程安全。
48、Java 中 interrupted 和 isInterrupted 方法的区别?
interrupt
interrupt 方法用于中断线程。调用该方法的线程的状态为将被置为”中断”状态。
注意:线程中断仅仅是置线程的中断状态位,不会停止线程。需要用户自己去监视线程的状态为并做处理。支持线程中断的方法(也就是线程中断后会抛出interruptedException 的方法)就是在监视线程的中断状态,一旦线程的中断状态被置为“中断状态”,就会抛出中断异常。
interrupted
查询当前线程的中断状态,并且清除原状态。如果一个线程被中断了,第一次调用 interrupted 则返回 true,第二次和后面的就返回 false 了。
isInterrupted
仅仅是查询当前线程的中断状态
49、为什么 wait 和 notify 方法要在同步块中调用?
Java API 强制要求这样做,如果你不这么做,你的代码会抛出IllegalMonitorStateException 异常。还有一个原因是为了避免 wait 和 notify之间产生竞态条件。
50、为什么你应该在循环中检查等待条件?
处于等待状态的线程可能会收到错误警报和伪唤醒,如果不在循环中检查等待条件,程序就会在没有满足结束条件的情况下退出。
51、Java 中的同步集合与并发集合有什么区别?
同步集合与并发集合都为多线程和并发提供了合适的线程安全的集合,不过并发集合的可扩展性更高。在 Java1.5 之前程序员们只有同步集合来用且在多线程并发的时候会导致争用,阻碍了系统的扩展性。Java5 介绍了并发集合像ConcurrentHashMap,不仅提供线程安全还用锁分离和内部分区等现代技术提高了可扩展性。
52、什么是线程池?为什么要使用它?
创建线程要花费昂贵的资源和时间,如果任务来了才创建线程那么响应时间会变长,而且一个进程能创建的线程数有限。为了避免这些问题,在程序启动的时候就创建若干线程来响应处理,它们被称为线程池,里面的线程叫工作线程。从JDK1.5 开始,Java API 提供了 Executor 框架让你可以创建不同的线程池。
53、怎么检测一个线程是否拥有锁?
在 java.lang.Thread 中有一个方法叫 holdsLock(),它返回 true 如果当且仅当当前线程拥有某个具体对象的锁。
54、你如何在 Java 中获取线程堆栈?
kill -3 [java pid]
不会在当前终端输出,它会输出到代码执行的或指定的地方去。比如,kill -3
tomcat pid, 输出堆栈到 log 目录下。
Jstack [java pid]
这个比较简单,在当前终端显示,也可以重定向到指定文件中。
-JvisualVM:Thread Dump
不做说明,打开 JvisualVM 后,都是界面操作,过程还是很简单的。
55、JVM 中哪个参数是用来控制线程的栈堆栈小的?
-Xss 每个线程的栈大小
56、Thread 类中的 yield 方法有什么作用?
使当前线程从执行状态(运行状态)变为可执行态(就绪状态)。
当前线程到了就绪状态,那么接下来哪个线程会从就绪状态变成执行状态呢?可能是当前线程,也可能是其他线程,看系统的分配了。
57、Java 中 ConcurrentHashMap 的并发度是什么?
ConcurrentHashMap 把实际 map 划分成若干部分来实现它的可扩展性和线程安全。这种划分是使用并发度获得的,它是 ConcurrentHashMap 类构造函数的一个可选参数,默认值为 16,这样在多线程情况下就能避免争用。
在 JDK8 后,它摒弃了 Segment(锁段)的概念,而是启用了一种全新的方式实现,利用 CAS 算法。同时加入了更多的辅助变量来提高并发度,具体内容还是查看源码吧。
58、Java 中 Semaphore 是什么?
Java 中的 Semaphore 是一种新的同步类,它是一个计数信号。从概念上讲,从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个acquire(),然后再获取该许可。每个 release()添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。信号量常常用于多线程的代码中,比如数据库连接池。
59、Java 线程池中 submit() 和 execute()方法有什么区别?
两个方法都可以向线程池提交任务,execute()方法的返回类型是 void,它定义在Executor 接口中。
而 submit()方法可以返回持有计算结果的 Future 对象,它定义在ExecutorService 接口中,它扩展了 Executor 接口,其它线程池类像ThreadPoolExecutor 和 ScheduledThreadPoolExecutor 都有这些方法。
60、什么是阻塞式方法?
阻塞式方法是指程序会一直等待该方法完成期间不做其他事情,ServerSocket 的accept()方法就是一直等待客户端连接。这里的阻塞是指调用结果返回之前,当前线程会被挂起,直到得到结果之后才会返回。此外,还有异步和非阻塞式方法在任务完成前就返回。
61、Java 中的 ReadWriteLock 是什么?
读写锁是用来提升并发程序性能的锁分离技术的成果。
62、volatile 变量和 atomic 变量有什么不同?
Volatile 变量可以确保先行关系,即写操作会发生在后续的读操作之前, 但它并不能保证原子性。例如用 volatile 修饰 count 变量那么 count++ 操作就不是原子性的。
而 AtomicInteger 类提供的 atomic 方法可以让这种操作具有原子性如getAndIncrement()方***原子性的进行增量操作把当前值加一,其它数据类型和引用变量也可以进行相似操作。
63、可以直接调用 Thread 类的 run ()方法么?
当然可以。但是如果我们调用了 Thread 的 run()方法,它的行为就会和普通的方法一样,会在当前线程中执行。为了在新的线程中执行我们的代码,必须使用Thread.start()方法。
64、如何让正在运行的线程暂停一段时间?
我们可以使用 Thread 类的 Sleep()方法让线程暂停一段时间。需要注意的是,这并不会让线程终止,一旦从休眠中唤醒线程,线程的状态将会被改变为 Runnable,并且根据线程调度,它将得到执行。
65、你对线程优先级的理解是什么?
每一个线程都是有优先级的,一般来说,高优先级的线程在运行时会具有优先权,但这依赖于线程调度的实现,这个实现是和操作系统相关的(OS dependent)。我们可以定义线程的优先级,但是这并不能保证高优先级的线程会在低优先级的线程前执行。线程优先级是一个 int 变量(从 1-10),1 代表最低优先级,10 代表最高优先级。
java 的线程优先级调度会委托给操作系统去处理,所以与具体的操作系统优先级有关,如非特别需要,一般无需设置线程优先级。
66、什么是线程调度器(Thread Scheduler)和时间分片(Time Slicing )?
线程调度器是一个操作系统服务,它负责为 Runnable 状态的线程分配 CPU 时间。一旦我们创建一个线程并启动它,它的执行便依赖于线程调度器的实现。同上一个问题,线程调度并不受到 Java 虚拟机控制,所以由应用程序来控制它是更好的选择(也就是说不要让你的程序依赖于线程的优先级)。
时间分片是指将可用的 CPU 时间分配给可用的 Runnable 线程的过程。分配 CPU时间可以基于线程优先级或者线程等待的时间。
67、你如何确保 main()方法所在的线程是 Java 程序最后结束的线程?
我们可以使用 Thread 类的 join()方法来确保所有程序创建的线程在 main()方法退出前结束。
68、线程之间是如何通信的?
当线程间是可以共享资源时,线程间通信是协调它们的重要的手段。Object 类中wait()\notify()\notifyAll()方法可以用于线程间通信关于资源的锁的状态。
69、为什么线程通信的方法 wait(), notify()和 notifyAll()被定义在 Object 类里?
Java 的每个对象中都有一个锁(monitor,也可以成为监视器) 并且 wait(),notify()等方法用于等待对象的锁或者通知其他线程对象的监视器可用。在 Java 的线程中并没有可供任何对象使用的锁和同步器。这就是为什么这些方法是 Object 类的一部分,这样 Java 的每一个类都有用于线程间通信的基本方法。
70、为什么 wait(), notify()和 notifyAll ()必须在同步方法或者同步块中被调用?
当一个线程需要调用对象的 wait()方法的时候,这个线程必须拥有该对象的锁,接着它就会释放这个对象锁并进入等待状态直到其他线程调用这个对象上的 notify()方法。同样的,当一个线程需要调用对象的 notify()方法时,它会释放这个对象的锁,以便其他在等待的线程就可以得到这个对象锁。由于所有的这些方法都需要线程持有对象的锁,这样就只能通过同步来实现,所以他们只能在同步方法或者同步块中被调用。
71、为什么 Thread 类的 sleep()和 yield ()方法是静态的?
Thread 类的 sleep()和 yield()方法将在当前正在执行的线程上运行。所以在其他处于等待状态的线程上调用这些方法是没有意义的。这就是为什么这些方法是静态的。它们可以在当前正在执行的线程中工作,并避免程序员错误的认为可以在其他非运行线程调用这些方法。
72、如何确保线程安全?
在 Java 中可以有很多方法来保证线程安全——同步,使用原子类(atomic concurrent classes),实现并发锁,使用 volatile 关键字,使用不变类和线程安全类。
73、同步方法和同步块,哪个是更好的选择?
同步块是更好的选择,因为它不会锁住整个对象(当然你也可以让它锁住整个对象)。同步方***锁住整个对象,哪怕这个类中有多个不相关联的同步块,这通常会导致他们停止执行并需要等待获得这个对象上的锁。
同步块更要符合开放调用的原则,只在需要锁住的代码块锁住相应的对象,这样从侧面来说也可以避免死锁。
74、如何创建守护线程?
使用 Thread 类的 setDaemon(true)方法可以将线程设置为守护线程,需要注意的是,需要在调用 start()方法前调用这个方法,否则会抛出IllegalThreadStateException 异常。
75、什么是 Java Timer 类?如何创建一个有特定时间间隔的任务?
java.util.Timer 是一个工具类,可以用于安排一个线程在未来的某个特定时间执行。Timer 类可以用安排一次性任务或者周期任务。
java.util.TimerTask 是一个实现了 Runnable 接口的抽象类,我们需要去继承这个类来创建我们自己的定时任务并使用 Timer 去安排它的执行。
有哪三类线程安全性问题?
1:运行结果错误
2:发布和初始化导致线程安全问题
3:活跃性问题(死锁、活锁、饥饿)
死锁与活锁的区别,死锁与饥饿的区别?
死锁:是指两个或两个以上的进程(或线程)在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。简单的说 线程A持有锁A试图获取锁B,线程B持有锁B试图获取锁A,互相等待。
活锁:任务或者执行者没有被阻塞,由于某些条件没有满足,导致一直重复尝试,失败,尝试,失败。
活锁和死锁的区别在于,处于活锁的实体是在不断的改变状态,所谓的“活”, 而处于死锁的实体表现为等待;活锁有可能自行解开,死锁则不能。
饥饿:一个或者多个线程因为种种原因无法获得所需要的资源,导致一直无法执行的状态。
产生死锁的必要条件:(互斥、请求与保持,不剥夺,循环等待)
1、互斥条件:所谓互斥就是进程在某一时间内独占资源。
2、请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放。
3、不剥夺条件:进程已获得资源,在末使用完之前,不能强行剥夺。
4、循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系。
jstack可以找到死锁,也可以通过代码ThreadMXBean类判断是否死锁
Java 中导致饥饿的原因:
1、高优先级线程吞噬所有的低优先级线程的 CPU 时间。
2、线程被永久堵塞在一个等待进入同步块的状态,因为其他线程总是能在它之前持续地对该同步块进行访问。
3、线程在等待一个本身也处于永久等待完成的对象(比如调用这个对象的 wait 方法),因为其他线程总是被持续地获得唤醒。
Java 中用到的线程调度算法是什么?
采用时间片轮转的方式。可以设置线程的优先级,会映射到下层的系统上面的优先级上,如非特别需要,尽量不要用,防止线程饥饿。
JDK1.8有哪些常用的阻塞队列,这些队列分别用什么实现?
ArrayBlockingQueue基于数组,有界阻塞队列LinkedBlockingQueue基于链表,无界阻塞队列SingleThreadExecutor,FixedThreadPoolPriorityBlockingQueue基于优先排序,无界阻塞队列DelayedWorkQueue(使用堆实现)支持延迟操作的无界阻塞队列ScheduledThreadPoolSingleThreadScheduluedExecutorSynchronousQueue用于线程同步的阻塞队列CachedThreadPool(本身就是Interger.Max_Value)LinkedTransferQueue基于链表,无界阻塞队列LinkedBlockingDeque基于链表,双向阻塞队列
线程池参数有哪些参数,线程创建的时机,有哪四种拒绝策略?
参数名含义corePoolSize核心线程数(常驻线程池的数量)maxPoolSize最大线程数KeepAliveTime+时间单位空闲线程的存活时间 (可以设置规定时间,如果超规定时间,非常驻的线程会被销毁)ThreadFactory线程工厂、用来创建新的线程workQueue用于存放任务的队列(阻塞队列)Handler处理被拒绝的任务(任务拒绝策略)
提交任务
1:判断核心线程池是否已满,没有,创建核心线程执行任务
2:判断工作队列是否已满,没有,任务添加到队列
3:判断线程池是否已满,没有,创建非核心线程执行任务
4:按照策略处理无法执行的任务
拒绝策略
1:AbortPolicy,抛出类型为RejectedExecutionException的RuntimeException,于是可以根据业务逻辑或者放弃提交
2:DiscardPolicy 直接丢弃最新提交的,存在数据丢失风险
3:DiscardOldestPolicy, 丢弃任务队列中头结点,通常是存活时间最长的任务,存在数据丢失风险
4:CallerRunsPolicy, 谁提交谁执行
1:JDK 中有哪几个线程池?顺带把线程池讲了个遍
JUC 提供了调度器对象 Executors 来创建线程池,可创建的线程池有四种
1、FixedThreadPool 核心线程池=最大线程池(当做固定的线程数的线程)
2、CachedThreadPool
可缓存的线程池,核心线程数为0,这种类型的线程池特点是:
1).工作线程的创建数量几乎没有限制(其实也有限制的,数目为 Interger. MAX_VALUE), 这样可灵活的往线程池
中添加线程。
2).如果长时间没有往线程池中提交任务,即如果工作线程空闲了指定的时间(默认为 1 分钟),则该工作线程将
自动终止。终止后,如果你又提交了新的任务,则线程池重新创建一个工作线程。KeepAlive 60S
3、ScheduleThreadPool 创建一个定长的线程池,而且支持定时的以及周期性的任务执行,类似于 Timer,如果执行出现异常后续则取消执行
4、SingleThreadExecutor 创建一个单线程化的 Executor,即只创建唯一的工作者线程来执行任务,如果这个
线程异常结束,会有另一个取代它,保证顺序执行(我觉得这点是它的特色)。单工作线程最大的特点是可保证顺序
地执行各个任务,并且在任意给定的时间不会有多个线程是活动的 。
5、SingleThreadScheduleExecutor:只有1个线程,Max最大线程数为Interger. MAX_VALUE,是ScheduleThreadPool实例
6、ForkJoinPool,适合执行可以产生子任务的线程池,fork方法分裂任务,Join方法汇总任务结果,每个线程都有自己的任务队列,减少了线程间的竞争和切换,使用双端队列实现任务窃取,适合递归场景
2:ThreadLocal 作用和原理分析:
ThreadLocal 主要为变量在每个线程中都创建了一个副本,那么每个线程可以访问自己内部的副本变量。
① 、每个线程的变量副本是存储在哪里的?(参考 ThreadLocal 的 get()源码)
每个线程都有一个 threadLocals 成员,引用类型是 ThreadLocalMap,以 ThreadLocal 和 ThreadLocal 对象声明的变量类型作为参数。这样,我们所使用的 ThreadLocal 变量的实际数据,通过 get 函数取值的时候,就是通过取出Thread 中 threadLocals 引用的 map,然后从这个 map 中根据当前 threadLocal 作为参数,取出数据。也就是说其实不同线程取到的变量副本都是由线程本身的提供的,存储在线程本身,只是借助ThreadLocal 去获取,不是存放于 ThreadLocal。
② 、变量副本【每个线程中保存的那个 map 中的变量】是怎么声明和初始化的?
当线程中的 threadLocals 成员是 null 的时候,会调用 ThreadLocal.createMap(Thread t, T firstValue)创建一个 map。同时根据函数参数设置上初始值。也就是说,当前线程的 threadlocalmap 是在第一次调用 set 的时候创建 map 并且设置上相应的值的。在每个线程中,都维护了一个 threadlocals 对象,在没有 ThreadLocal 变量的时候是 null 的。一旦在 ThreadLocal的 createMap 函数中初始化之后,这个 threadlocals 就初始化了。以后每次 ThreadLocal 对象想要访问变量的时候,比如 set 函数和 get 函数,都是先通过 getMap(Thread t)函数,先将线程的 map 取出,然后再从这个在线程(Thread)中维护的 map 中取出数据或者存入对应数据。
③、不同的线程局部变量,比如说声明了 n 个(n>=2)这样的线程局部变量 threadlocal,那么在 Thread 中的
threadlocals 中是怎么存储的呢?threadlocalmap 中是怎么操作的?在 ThreadLocal 的 set 函数中,可以看到,其中的 map.set(this, value)把当前的 threadlocal 传入到 map 中作为键,也就是说,在不同的线程的 threadlocals 变量中,都会有一个以你所声明的那个线程局部变量 threadlocal 作为键的key-value。假设说声明了 N 个这样的线程局部变量变量,那么在线程的 ThreadLocalMap 中就会有 n 个分别以你的线程局部变量作为 key 的键值对。
ThreadLocal 为什么会发生内存泄漏?
threadLocalMap使用ThreadLocal的弱引用作为key,如果一个ThreadLocal没有外部强引用来引用它,那么系统 GC 的时候,这个ThreadLocal势必会被回收,这样一来,ThreadLocalMap中就会出现key为null的Entry,就没有办法访问这些key为null的Entry的value,如果当前线程再迟迟不结束的话,这些key为null的Entry的value就会一直存在一条强引用链:Thread Ref -> Thread -> ThreaLocalMap -> Entry -> value永远无法回收,造成内存泄漏
ThreadLocal 的 ThreadLocalMap 使用线程探测法
创建线程的方法:
继承Thread 和实现callable接口,本质上是这两种
第三种方式,通过线程池创建线程。默认是采用DefaultThreadFactory,它会给我们线程池创建的线程设置一些默认值,比如它的名字,它是不是守护线程以及它的优先级
第四种方式,有返回值的callable也是新建线程的方式
第五种方式:TimerTask 实现runnable接口,Timer内部有个TimerThread继承自Thread,因此绕回来还是最开始2种方式
继承thread和实现runable接口的区别?
runable 最终调用Target.run(),thread方式 的run()整个都被重写。
实现runnable接口的3个好处:
1:可以把不同的内容进行解耦,权责分明
2:某些情况下可以提升性能,减少开销
3:继承Thread类相当于限制了代码未来的可拓展性
6:为什么不强制停止,而是通知、协作?
对java而言,最正确停止线程的方式是使用interrupt,但是interrupt仅仅起到通知被停止线程的作用。
对于被停止的线程而言,它拥有完全的自主权,可以立刻停止,也可以过一段时间后停止,也可以选择不停止,因为被停止的线程需要准备时间收尾Java 希望程序间能够相互通知,相互协作的管理线程,如果强制停止,可能会造成数据不完整。
如何用interrunpt 停止线程?
1:如果interrupt的isInterrupted为true,则有表示有线程希望当前线程中断
2:待中断线程要检查是否有工作要完成(处理业务场景),再选择执行中断
为什么stop、suspend、resume方法被弃用?
stop方***把线程停止,导致任务戛然停止,导致数据完整性有问题,有风险
suspend/resume 容易导致死锁/不会释放锁
为什么volatile 标记停止线程是不完美的?
volatile 在某种特殊的情况,比如线程被长时间阻塞的情况就无法及时感受中断。
线程生命周期状态
1:New(新建)
2:Runnable(可运行),对应操作系统的running 和Ready状态
3:Blocked(被阻塞) 3,4,5对应阻塞状态 从runnable状态转到Blocked状态进入synchronized 代码块,但是没拿到锁
4:Waiting(等待) 从waiting状态流转到其他状态,如果其他线程调用notify()或者notifyAll()唤醒它,它会直接进入Blocked状态,如果它抢到锁就回到Runnable状态
5:Timed_waiting(计时等待)
6:Terminated(被终止)
可以通过getStatus方法获取状态,当前状态只能为一种且不可逆,线程的状态不可能直接进入Blocked状态,它需要先经历Runnable状态
join/yield方法?
Join 让“主线程”等待“子线程”结束之后才能继续运行
Java线程中有一个Thread.yield( )方法,很多人翻译成线程让步。顾名思义,就是说当一个线程使用了这个方法之后,它就会把自己CPU执行的时间让掉,让自己或者其它的线程运行。
进入Terminated状态有两种可能
1:run 方法执行完毕,线程正常退出
2:出现一个没有捕获的异常,终止了run()方法,最终导致异常终止
wait/notify 和sleep方法的异同?
相同点:
1.它们都可以让线程阻塞
2.它们都可以响应interrupt 中断,在等待的过程中如果收到中断信息,都可以进行响应,并抛出InterruptedException异常
不同点:
1:wait 方法必须在synchronized 保护的代码中使用,而sleep方法并没有这个要求
2:在同步代码中执行sleep方法,并不会释放monitor锁,但执行wait方***主动使用释放monitor锁
3:sleep方法中会要求定义一个时间,时间到期后会主动恢复,而对没有参数的wait方法,意味着永远等待,直到被中断或被唤醒才能恢复,它并不会主动恢复
4:wait/notify是Object类的方法,Sleep是Thread类的方法
为什么wait/notify/notifyAll 定义在Object 类中,而sleep 定义在Thread中?
因为Java中每个对象都有一把monitor监视器的锁,这个锁是对象级别的,所以放在Object类中最合适(所有对象的父类)
如何实现生产者消费者模式 ?
1:使用BlockingQueue实现生产者消费者模式:
2:Object wait/notify
3:使用ReetrantLock的Condition(需要新增非空和非满2个状态),put/take 方法需要使用synchronized 修饰”记得使用while判断条件而不能使用if
什么是线程安全?
1:多个线程访问同一个对象,不需要额外的同步,不需要考虑这些线程在运行时环境下调度和交替执行,而调用这个对象的行为都能获取正确的结果,而这个对象便是线程安全
16:哪些场景需要额外注意线程安全问题?
1:访问共享变量或资源
2:依赖时序操作
if(x==1){
x= 7*x;
}
3:不同数据之间存在绑定关系(如IP绑定端口)
4:对方没有声明自己是线程安全的(如ArrayList是不是并发安全的)
多线程为什么会带来性能问题?
1:线程调度开销,造成频繁的上下文切换(如果程序频繁竞争锁,或由于I/O读写导致频繁阻塞)
2:协作开销,为了保证数据的正确性就有可能禁止编译器和CPU对其进行重排序优化
为什么手动创建线程池比较好,如果自己创建多少线程数量比较合适呢?
自己明确线程池运行规则,线程池线程的数量,避免造成OOM的风险
CPU密集型任务(加密、解密、压缩、计算)线程数为CPU核心数的1到2倍,设置过多容易造成不必要的上下文切换。I/O密集型(数据库/网络/文件)CPU核心数*(1+平均等待时间/平均工作时间)
你知道有哪几种锁?分别有什么特点?
偏向锁/轻量级锁/重量级锁偏向锁:不存在竞争,打个标记就行了。轻量级锁:当锁原来是偏向锁时,被另一个线程访问,说明存在竞争,偏向锁会升级为轻量级锁,线程会通过自旋的形式尝试获取锁,而不会陷入阻塞。可以使用CAS解决(短时间竞争)。互斥锁:轻量级锁不能满足需求,操作系统的同步机制实现,开销相对较大(多个竞争/切竞争时间比较长)。可重入锁/非可重入锁可重入锁:线程当前已经持有这把锁,能在不释放这把锁的情况下再次获取这把锁(ReentrantLock)不可重入锁:虽然线程持有了这把锁,但是想再次获取这把锁,也要先释放再获取共享锁/独占锁共享锁: 同一把锁被多个线程同时获取 (读锁时共享锁)读占锁: 这把锁只能同时被一个线程获取(写锁时独占锁)公平锁/非公平锁公平锁:如果线程拿不到锁会排队,先来先得非公平锁: 插队悲观锁/乐观锁(是否锁住资源)悲观锁:获取资源之前必须先拿到锁达到独占状态,其他线程不能影响该线程。使用synchroized关键字或Lock接口实现,适用于并发写入多、临界区代码复杂、竞争激烈乐观锁:不要求获取资源前拿到锁,也不会锁住资源,使用CAS完成了对资源的修改,使用原子类,如AtomicInteger。多个线程可以同时操作同一个原子变量适用于大部分是读取、少部分是修改的场景自旋锁/非自旋锁t自旋锁:如果线程现在拿不到锁,并不直接陷入阻塞或者释放CPU,而是不停地尝试获取锁非自旋锁:拿不到锁就直接放弃,或者进行其他的处理逻辑(如排队、阻塞)适用于:并发度不是特别高的场景,以及临界区比较短小的场景可中断锁/不可中断锁ReentrantLock 是可中断锁,获取锁过程中如果不想获取了,可以在中断后做其他的事情synchronized 不可中断锁,一旦线程申请了锁,只能等到拿到锁以后才能做其他的逻辑处理
Synchronized Lock异同?
同: 都是保护线程安全的,都可以保证可见性,都是可重入的
不同:
使用方法不同、加锁顺序不同、Synchronized 锁不够灵活,只能被一个线程使用,lock锁可以被多个持有(如读写锁)
红黑树有哪些特点?
每个节点要么是红色、要么是黑色,但根节点永远是黑色的。
红色节点不能连续,红色节点的子和父都不能是红色的
从任一节点到其每个叶子节点的路径都包含相同数量的黑色节点。o(logn)
1:JMM的内存模型是什么?
2:JVM为什么要重排序?
为了提高性能,编译器和处理器均会读指令重排序。
重排序会造成JVM可见性的问题,可以插入特定类型的内存屏障(memory barriers),通过内存屏障命令禁止特定类型的处理器重排以保障内存可见性
3:JMM中有几类内存屏障,分别是干什么的?
屏障类型指令类型说明LoadLoadBarriersLoad1;LoadLoad;Load2确保Load1数据的加载,之前于Load2及所有后续指令的装载StoreStoreBarriersStore1:StoreStore:Store2确保Store1数据对其他处理器可见(刷新到内存),之前于Store2及后续存储指令的存储LoadStoreBarriersLoad1;LoadStore;Load2确保Load1数据装载,之前于Store2及后续存储指令的存储StoreLoadBarriersStore1:StoreLoad;Load2确保Store1数据对其他处理器变得可见,之前于Load2及所有后续装载指令的装载。
JVM
1、在 java 中守护线程和本地线程区别?
java 中的线程分为两种:守护线程(Daemon)和用户线程(User)。
任何线程都可以设置为守护线程和用户线程,通过方法 Thread.setDaemon(boolon);true 则把该线程设置为守护线程,反之则为用户线程。Thread.setDaemon()必须在 Thread.start()之前调用,否则运行时会抛出异常。
两者的区别:
唯一的区别是判断虚拟机(JVM)何时离开,Daemon 是为其他线程提供服务,如果全部的 User Thread 已经撤离,Daemon 没有可服务的线程,JVM 撤离。也可以理解为守护线程是 JVM 自动创建的线程(但不一定),用户线程是程序创建的线程;比如 JVM 的垃圾回收线程是一个守护线程,当所有线程已经撤离,不再产生垃圾,守护线程自然就没事可干了,当垃圾回收线程是 Java 虚拟机上仅剩的线程时,Java 虚拟机会自动离开。
扩展:Thread Dump 打印出来的线程信息,含有 daemon 字样的线程即为守护进程,可能会有:服务守护进程、编译守护进程、windows 下的监听 Ctrl+break的守护进程、Finalizer 守护进程、引用处理守护进程、GC 守护进程。
2、线程与进程的区别?
进程是操作系统分配资源的最小单元,线程是操作系统调度的最小单元。
一个程序至少有一个进程,一个进程至少有一个线程。
3、什么是多线程中的上下文切换?
多线程会共同使用一组计算机上的 CPU,而线程数大于给程序分配的 CPU 数量时,为了让各个线程都有执行的机会,就需要轮转使用 CPU。不同的线程切换使用 CPU发生的切换数据等就是上下文切换。
6、什么是线程组,为什么在 Java 中不推荐使用?
ThreadGroup 类,可以把线程归属到某一个线程组中,线程组中可以有线程对象,也可以有线程组,组中还可以有线程,这样的组织结构有点类似于树的形式。
为什么不推荐使用?因为使用有很多的安全隐患吧,没有具体追究,如果需要使用,推荐使用线程池。
7、为什么使用 Executor 框架?
每次执行任务创建线程 new Thread()比较消耗性能,创建一个线程是比较耗时、耗资源的。
调用 new Thread()创建的线程缺乏管理,被称为野线程,而且可以无限制的创建,线程之间的相互竞争会导致过多占用系统资源而导致系统瘫痪,还有线程之间的频繁交替也会消耗很多系统资源。
接使用 new Thread() 启动的线程不利于扩展,比如定时执行、定期执行、定时定期执行、线程中断等都不便实现。
8、在 Java 中 Executor 和 Executors 的区别?
Executors 工具类的不同方法按照我们的需求创建了不同的线程池,来满足业务的需求。
Executor 接口对象能执行我们的线程任务。
ExecutorService 接口继承了 Executor 接口并进行了扩展,提供了更多的方法我们能获得任务执行的状态并且可以获取任务的返回值。
使用 ThreadPoolExecutor 可以创建自定义线程池。
Future 表示异步计算的结果,他提供了检查计算是否完成的方法,以等待计算的完成,并可以使用 get()方法获取计算的结果。
9、如何在 Windows 和 Linux 上查找哪个线程使用的 CPU 时间最长?
10、什么是原子操作?在 Java Concurrency API 中有哪些原子类(atomic classes)?
原子操作(atomic operation)意为”不可被中断的一个或一系列操作” 。
处理器使用基于对缓存加锁或总线加锁的方式来实现多处理器之间的原子操作。在 Java 中可以通过锁和循环 CAS 的方式来实现原子操作。CAS 操作——Compare & Set,或是 Compare & Swap,现在几乎所有的 CPU 指令都支持 CAS的原子操作。
原子操作是指一个不受其他操作影响的操作任务单元。原子操作是在多线程环境下避免数据不一致必须的手段。
int++并不是一个原子操作,所以当一个线程读取它的值并加 1 时,另外一个线程有可能会读到之前的值,这就会引发错误。
为了解决这个问题,必须保证增加操作是原子的,在 JDK1.5 之前我们可以使用同步技术来做到这一点。到 JDK1.5,java.util.concurrent.atomic 包提供了 int 和long 类型的原子包装类,它们可以自动的保证对于他们的操作是原子的并且不需要使用同步。
java.util.concurrent 这个包里面提供了一组原子类。其基本的特性就是在多线程环境下,当有多个线程同时执行这些类的实例包含的方法时,具有排他性,即当某个线程进入方法,执行其中的指令时,不会被其他线程打断,而别的线程就像自旋锁一样,一直等到该方法执行完成,才由 JVM 从等待队列中选择一个另一个线程进入,这只是一种逻辑上的理解。
原子类:AtomicBoolean,AtomicInteger,AtomicLong,AtomicReference
原子数组:AtomicIntegerArray,AtomicLongArray,AtomicReferenceArray
原子属性更新器:AtomicLongFieldUpdater,AtomicIntegerFieldUpdater,AtomicReferenceFieldUpdater
解决 ABA 问题的原子类:AtomicMarkableReference(通过引入一个 boolean来反映有没有被删除),AtomicStampedReference(通过引入一个 int 来累加来反映中间有没有变过)
11、Java Concurrency API 中的 Lock 接口(Lock interface)是什么?对比同步它有什么优势?
Lock 接口比同步方法和同步块提供了更具扩展性的锁操作。
他们允许更灵活的结构,可以具有完全不同的性质,并且可以支持多个相关类的条件对象。
它的优势有:
可以使锁更公平
可以使线程在等待锁的时候响应中断
可以让线程尝试获取锁,并在无法获取锁的时候立即返回或者等待一段时间
可以在不同的范围,以不同的顺序获取和释放锁
整体上来说 Lock 是 synchronized 的扩展版,Lock 提供了无条件的、可轮询的(tryLock 方法)、定时的(tryLock 带参方法)、可中断的(lockInterruptibly)、可多条件队列的(newCondition 方法)锁操作。另外 Lock 的实现类基本都支持非公平锁(默认)和公平锁,synchronized 只支持非公平锁,当然,在大部分情况下,非公平锁是高效的选择。
12、什么是 Executors 框架?
Executor 框架是一个根据一组执行策略调用,调度,执行和控制的异步任务的框架。
无限制的创建线程会引起应用程序内存溢出。所以创建一个线程池是个更好的的解决方案,因为可以限制线程的数量并且可以回收再利用这些线程。利用Executors 框架可以非常方便的创建一个线程池。
13、什么是阻塞队列?阻塞队列的实现原理是什么?如何使用阻塞队列来实现生产者-消费者模型?
阻塞队列(BlockingQueue)是一个支持两个附加操作的队列。
这两个附加的操作是:在队列为空时,获取元素的线程会等待队列变为非空。当队列满时,存储元素的线程会等待队列可用。
阻塞队列常用于生产者和消费者的场景,生产者是往队列里添加元素的线程,消费者是从队列里拿元素的线程。阻塞队列就是生产者存放元素的容器,而消费者也只从容器里拿元素。
JDK7 提供了 7 个阻塞队列。分别是:
ArrayBlockingQueue :一个由数组结构组成的有界阻塞队列。
LinkedBlockingQueue :一个由链表结构组成的有界阻塞队列。
PriorityBlockingQueue :一个支持优先级排序的无界阻塞队列。
DelayQueue:一个使用优先级队列实现的无界阻塞队列。
SynchronousQueue:一个不存储元素的阻塞队列。
LinkedTransferQueue:一个由链表结构组成的无界阻塞队列。
LinkedBlockingDeque:一个由链表结构组成的双向阻塞队列。
Java 5 之前实现同步存取时,可以使用普通的一个集合,然后在使用线程的协作和线程同步可以实现生产者,消费者模式,主要的技术就是用好,wait ,notify,notifyAll,sychronized 这些关键字。而在 java 5 之后,可以使用阻塞队列来实现,此方式大大简少了代码量,使得多线程编程更加容易,安全方面也有保障。
BlockingQueue 接口是 Queue 的子接口,它的主要用途并不是作为容器,而是作为线程同步的的工具,因此他具有一个很明显的特性,当生产者线程试图向BlockingQueue 放入元素时,如果队列已满,则线程被阻塞,当消费者线程试图从中取出一个元素时,如果队列为空,则该线程会被阻塞,正是因为它所具有这个特性,所以在程序中多个线程交替向 BlockingQueue 中放入元素,取出元素,它可以很好的控制线程之间的通信。
阻塞队列使用最经典的场景就是 socket 客户端数据的读取和解析,读取数据的线程不断将数据放入队列,然后解析线程不断从队列取数据解析。
14、什么是 Callable 和 Future?
Callable 接口类似于 Runnable,从名字就可以看出来了,但是 Runnable 不会返回结果,并且无法抛出返回结果的异常,而 Callable 功能更强大一些,被线程执行后,可以返回值,这个返回值可以被 Future 拿到,也就是说,Future 可以拿到异步执行任务的返回值。
可以认为是带有回调的 Runnable。
Future 接口表示异步任务,是还没有完成的任务给出的未来结果。所以说 Callable用于产生结果,Future 用于获取结果。
15、什么是 FutureTask?使用 ExecutorService 启动任务。
在 Java 并发程序中 FutureTask 表示一个可以取消的异步运算。它有启动和取消运算、查询运算是否完成和取回运算结果等方法。只有当运算完成的时候结果才能取回,如果运算尚未完成 get 方法将会阻塞。一个 FutureTask 对象可以对调用了 Callable 和 Runnable 的对象进行包装,由于 FutureTask 也是调用了 Runnable接口所以它可以提交给 Executor 来执行。
16、什么是并发容器的实现?
何为同步容器:可以简单地理解为通过 synchronized 来实现同步的容器,如果有多个线程调用同步容器的方法,它们将会串行执行。比如 Vector,Hashtable,以及 Collections.synchronizedSet,synchronizedList 等方法返回的容器。可以通过查看 Vector,Hashtable 等这些同步容器的实现代码,可以看到这些容器实现线程安全的方式就是将它们的状态封装起来,并在需要同步的方法上加上关键字 synchronized。
并发容器使用了与同步容器完全不同的加锁策略来提供更高的并发性和伸缩性,例如在 ConcurrentHashMap 中采用了一种粒度更细的加锁机制,可以称为分段锁,在这种锁机制下,允许任意数量的读线程并发地访问 map,并且执行读操作的线程和写操作的线程也可以并发的访问 map,同时允许一定数量的写操作线程并发地修改 map,所以它可以在并发环境下实现更高的吞吐量。
17、多线程同步和互斥有几种实现方法,都是什么?
线程同步是指线程之间所具有的一种制约关系,一个线程的执行依赖另一个线程的消息,当它没有得到另一个线程的消息时应等待,直到消息到达时才被唤醒。线程互斥是指对于共享的进程系统资源,在各单个线程访问时的排它性。当有若干个线程都要使用某一共享资源时,任何时刻最多只允许一个线程去使用,其它要使用该资源的线程必须等待,直到占用资源者释放该资源。线程互斥可以看成是一种特殊的线程同步。
线程间的同步方法大体可分为两类:用户模式和内核模式。顾名思义,内核模式就是指利用系统内核对象的单一性来进行同步,使用时需要切换内核态与用户态,而用户模式就是不需要切换到内核态,只在用户态完成操作。
用户模式下的方法有:原子操作(例如一个单一的全局变量),临界区。内核模式下的方法有:事件,信号量,互斥量。
18、什么是竞争条件?你怎样发现和解决竞争?
当多个进程都企图对共享数据进行某种处理,而最后的结果又取决于进程运行的顺序时,则我们认为这发生了竞争条件(race condition)。
19、你将如何使用 thread dump?你将如何分析 Thread dump?
新建状态(New)
用 new 语句创建的线程处于新建状态,此时它和其他 Java 对象一样,仅仅在堆区中被分配了内存。
就绪状态(Runnable)
当一个线程对象创建后,其他线程调用它的 start()方法,该线程就进入就绪状态,Java 虚拟机会为它创建方法调用栈和程序计数器。处于这个状态的线程位于可运行池中,等待获得 CPU 的使用权。
运行状态(Running)
处于这个状态的线程占用 CPU,执行程序代码。只有处于就绪状态的线程才有机会转到运行状态。
阻塞状态(Blocked)
阻塞状态是指线程因为某些原因放弃 CPU,暂时停止运行。当线程处于阻塞状态时,Java 虚拟机不会给线程分配 CPU。直到线程重新进入就绪状态,它才有机会转到运行状态。
阻塞状态可分为以下 3 种:
位于对象等待池中的阻塞状态(Blocked in object’s wait pool):
当线程处于运行状态时,如果执行了某个对象的 wait()方法,Java 虚拟机就会把线程放到这个对象的等待池中,这涉及到“线程通信”的内容。
位于对象锁池中的阻塞状态(Blocked in object’s lock pool):
当线程处于运行状态时,试图获得某个对象的同步锁时,如果该对象的同步锁已经被其他线程占用,Java 虚拟机就会把这个线程放到这个对象的锁池中,这涉及到“线程同步”的内容。
其他阻塞状态(Otherwise Blocked):
当前线程执行了 sleep()方法,或者调用了其他线程的 join()方法,或者发出了 I/O请求时,就会进入这个状态。
死亡状态(Dead)
当线程退出 run()方法时,就进入死亡状态,该线程结束生命周期。
20、为什么我们调用 start()方法时会执行 run()方法,为什么我们不能直接调用 run()方法?
当你调用 start()方法时你将创建新的线程,并且执行在 run()方法里的代码。
但是如果你直接调用 run()方法,它不会创建新的线程也不会执行调用线程的代码,只会把 run 方法当作普通方法去执行。
21、Java 中你怎样唤醒一个阻塞的线程?
在 Java 发展史上曾经使用 suspend()、resume()方法对于线程进行阻塞唤醒,但随之出现很多问题,比较典型的还是死锁问题。
解决方案可以使用以对象为目标的阻塞,即利用 Object 类的 wait()和 notify()方法实现线程阻塞。
首 先 ,wait、notify 方法是针对对象的,调用任意对象的 wait()方法都将导致线程阻塞,阻塞的同时也将释放该对象的锁,相应地,调用任意对象的 notify()方法则将随机解除该对象阻塞的线程,但它需要重新获取改对象的锁,直到获取成功才能往下执行;其次,wait、notify 方法必须在 synchronized 块或方法中被调用,并且要保证同步块或方法的锁对象与调用 wait、notify 方法的对象是同一个,如此一来在调用 wait 之前当前线程就已经成功获取某对象的锁,执行 wait 阻塞后当前线程就将之前获取的对象锁释放。
22、在 Java 中 CycliBarriar 和 CountdownLatch 有什么区别?
CyclicBarrier 可以重复使用,而 CountdownLatch 不能重复使用。
Java 的 concurrent 包里面的 CountDownLatch 其实可以把它看作一个计数器,只不过这个计数器的操作是原子操作,同时只能有一个线程去操作这个计数器,也就是同时只能有一个线程去减这个计数器里面的值。你可以向 CountDownLatch 对象设置一个初始的数字作为计数值,任何调用这个对象上的 await()方法都会阻塞,直到这个计数器的计数值被其他的线程减为 0 为止。
所以在当前计数到达零之前,await 方***一直受阻塞。之后,会释放所有等待的线程,await 的所有后续调用都将立即返回。这种现象只出现一次——计数无法被重置。如果需要重置计数,请考虑使用 CyclicBarrier。CountDownLatch 的一个非常典型的应用场景是:有一个任务想要往下执行,但必须要等到其他的任务执行完毕后才可以继续往下执行。假如我们这个想要继续往下执行的任务调用一个 CountDownLatch 对象的 await()方法,其他的任务执行完自己的任务后调用同一个 CountDownLatch 对象上的 countDown()方法,这个调用 await()方法的任务将一直阻塞等待,直到这个 CountDownLatch 对象的计数值减到 0 为止。
CyclicBarrier 一个同步辅助类,它允许一组线程互相等待,直到到达某个公共屏障点 (common barrier point)。在涉及一组固定大小的线程的程序中,这些线程必须不时地互相等待,此时 CyclicBarrier 很有用。因为该 barrier 在释放等待线程后可以重用,所以称它为循环 的 barrier。
23、什么是不可变对象,它对写并发应用有什么帮助?
不可变对象(Immutable Objects)即对象一旦被创建它的状态(对象的数据,也即对象属性值)就不能改变,反之即为可变对象(Mutable Objects)。
不可变对象的类即为不可变类(Immutable Class)。Java 平台类库中包含许多不可变类,如 String、基本类型的包装类、BigInteger 和 BigDecimal 等。
不可变对象天生是线程安全的。它们的常量(域)是在构造函数中创建的。既然它们的状态无法修改,这些常量永远不会变。
不可变对象永远是线程安全的。
只有满足如下状态,一个对象才是不可变的;
它的状态不能在创建后再被修改;
所有域都是 final 类型;并且,它被正确创建(创建期间没有发生 this 引用的逸出)。
24、什么是多线程中的上下文切换?
在上下文切换过程中,CPU 会停止处理当前运行的程序,并保存当前程序运行的具***置以便之后继续运行。从这个角度来看,上下文切换有点像我们同时阅读几本书,在来回切换书本的同时我们需要记住每本书当前读到的页码。在程序中,上下文切换过程中的“页码”信息是保存在进程控制块(PCB)中的。PCB 还经常被称作“切换桢”(switchframe)。“页码”信息会一直保存到 CPU 的内存中,直到他们被再次使用。
上下文切换是存储和恢复 CPU 状态的过程,它使得线程执行能够从中断点恢复执行。上下文切换是多任务操作系统和多线程环境的基本特征。
25、Java 中用到的线程调度算法是什么?
计算机通常只有一个 CPU,在任意时刻只能执行一条机器指令,每个线程只有获得CPU 的使用权才能执行指令.所谓多线程的并发运行,其实是指从宏观上看,各个线程轮流获得 CPU 的使用权,分别执行各自的任务.在运行池中,会有多个处于就绪状态的线程在等待 CPU,JAVA 虚拟机的一项任务就是负责线程的调度,线程调度是指按照特定机制为多个线程分配 CPU 的使用权.
有两种调度模型:分时调度模型和抢占式调度模型。
分时调度模型是指让所有的线程轮流获得 cpu 的使用权,并且平均分配每个线程占用的 CPU 的时间片这个也比较好理解。
Java虚拟机采用抢占式调度模型,是指优先让可运行池中优先级高的线程占用CPU,如果可运行池中的线程优先级相同,那么就随机选择一个线程,使其占用CPU。处于运行状态的线程会一直运行,直至它不得不放弃 CPU。
26、什么是线程组,为什么在 Java 中不推荐使用?
线程组和线程池是两个不同的概念,他们的作用完全不同,前者是为了方便线程的管理,后者是为了管理线程的生命周期,复用线程,减少创建销毁线程的开销。
27、为什么使用 Executor 框架比使用应用创建和管理线程好?
为什么要使用 Executor 线程池框架
1、每次执行任务创建线程 new Thread()比较消耗性能,创建一个线程是比较耗时、耗资源的。
2、调用 new Thread()创建的线程缺乏管理,被称为野线程,而且可以无限制的创建,线程之间的相互竞争会导致过多占用系统资源而导致系统瘫痪,还有线程之间的频繁交替也会消耗很多系统资源。
3、直接使用 new Thread() 启动的线程不利于扩展,比如定时执行、定期执行、定时定期执行、线程中断等都不便实现。
使用 Executor 线程池框架的优点
1、能复用已存在并空闲的线程从而减少线程对象的创建从而减少了消亡线程的开销。
2、可有效控制最大并发线程数,提高系统资源使用率,同时避免过多资源竞争。
3、框架中已经有定时、定期、单线程、并发数控制等功能。
综上所述使用线程池框架 Executor 能更好的管理线程、提供系统资源使用率。
28、java 中有几种方法可以实现一个线程?
继承 Thread 类
实现 Runnable 接口
实现 Callable 接口,需要实现的是 call() 方法
29、如何停止一个正在运行的线程?
使用共享变量的方式
在这种方式中,之所以引入共享变量,是因为该变量可以被多个执行相同任务的线程用来作为是否中断的信号,通知中断线程的执行。
使用 interrupt 方法终止线程
如果一个线程由于等待某些事件的发生而被阻塞,又该怎样停止该线程呢?这种情况经常会发生,比如当一个线程由于需要等候键盘输入而被阻塞,或者调用Thread.join()方法,或者 Thread.sleep()方法,在网络中调用ServerSocket.accept()方法,或者调用了 DatagramSocket.receive()方法时,都有可能导致线程阻塞,使线程处于处于不可运行状态时,即使主程序中将该线程的共享变量设置为 true,但该线程此时根本无法检查循环标志,当然也就无法立即中断。这里我们给出的建议是,不要使用 stop()方法,而是使用 Thread 提供的interrupt()方法,因为该方法虽然不会中断一个正在运行的线程,但是它可以使一个被阻塞的线程抛出一个中断异常,从而使线程提前结束阻塞状态,退出堵塞代码。
30、notify()和 notifyAll()有什么区别?
当一个线程进入 wait 之后,就必须等其他线程 notify/notifyall,使用 notifyall,可以唤醒所有处于 wait 状态的线程,使其重新进入锁的争夺队列中,而 notify 只能唤醒一个。
如果没把握,建议 notifyAll,防止 notigy 因为信号丢失而造成程序异常。
31、什么是 Daemon 线程?它有什么意义?
所谓后台(daemon)线程,是指在程序运行的时候在后台提供一种通用服务的线程,并且这个线程并不属于程序中不可或缺的部分。因此,当所有的非后台线程结束时,程序也就终止了,同时会杀死进程中的所有后台线程。反过来说,只要有任何非后台线程还在运行,程序就不会终止。必须在线程启动之前调用setDaemon()方法,才能把它设置为后台线程。注意:后台进程在不执行 finally子句的情况下就会终止其 run()方法。
比如:JVM 的垃圾回收线程就是 Daemon 线程,Finalizer 也是守护线程。
32、java 如何实现多线程之间的通讯和协作?
中断 和 共享变量
33、什么是可重入锁(ReentrantLock)?
举例来说明锁的可重入性
public class UnReentrant{ Lock lock = new Lock(); public void outer(){ lock.lock(); inner(); lock.unlock(); } public void inner(){ lock.lock(); //do something lock.unlock(); }}
outer 中调用了 inner,outer 先锁住了 lock,这样 inner 就不能再获取 lock。其实调用 outer 的线程已经获取了 lock 锁,但是不能在 inner 中重复利用已经获取的锁资源,这种锁即称之为 不可重入可重入就意味着:线程可以进入任何一个它已经拥有的锁所同步着的代码块。
synchronized、ReentrantLock 都是可重入的锁,可重入锁相对来说简化了并发编程的开发。
34、当一个线程进入某个对象的一个 synchronized 的实例方法后,其它线程是否可进入此对象的其它方法?
如果其他方法没有 synchronized 的话,其他线程是可以进入的。
所以要开放一个线程安全的对象时,得保证每个方法都是线程安全的。
35、乐观锁和悲观锁的理解及如何实现,有哪些实现方式?
悲观锁:总是假设最坏的情况,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会阻塞直到它拿到锁。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。再比如 Java 里面的同步原语 synchronized 关键字的实现也是悲观锁。
乐观锁:顾名思义,就是很乐观,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号等机制。乐观锁适用于多读的应用类型,这样可以提高吞吐量,像数据库提供的类似于 write_condition 机制,其实都是提供的乐观锁。在 Java中 java.util.concurrent.atomic 包下面的原子变量类就是使用了乐观锁的一种实现方式 CAS 实现的。
乐观锁的实现方式:
1、使用版本标识来确定读到的数据与提交时的数据是否一致。提交后修改版本标识,不一致时可以采取丢弃和再次尝试的策略。
2、java 中的 Compare and Swap 即 CAS ,当多个线程尝试使用 CAS 同时更新同一个变量时,只有其中一个线程能更新变量的值,而其它线程都失败,失败的线程并不会被挂起,而是被告知这次竞争中失败,并可以再次尝试。CAS 操作中包含三个操作数 —— 需要读写的内存位置(V)、进行比较的预期原值(A)和拟写入的新值(B)。如果内存位置 V 的值与预期原值 A 相匹配,那么处理器会自动将该位置值更新为新值 B。否则处理器不做任何操作。
CAS 缺点:
1、ABA 问题:
比如说一个线程 one 从内存位置 V 中取出 A,这时候另一个线程 two 也从内存中取出 A,并且 two 进行了一些操作变成了 B,然后 two 又将 V 位置的数据变成 A,这时候线程 one 进行 CAS 操作发现内存中仍然是 A,然后 one 操作成功。尽管线程 one 的 CAS 操作成功,但可能存在潜藏的问题。从 Java1.5 开始 JDK 的 atomic包里提供了一个类 AtomicStampedReference 来解决 ABA 问题。
2、循环时间长开销大:
对于资源竞争严重(线程冲突严重)的情况,CAS 自旋的概率会比较大,从而浪费更多的 CPU 资源,效率低于 synchronized。
3、只能保证一个共享变量的原子操作:
当对一个共享变量执行操作时,我们可以使用循环 CAS 的方式来保证原子操作,但是对多个共享变量操作时,循环 CAS 就无法保证操作的原子性,这个时候就可以用锁。
36、SynchronizedMap 和 ConcurrentHashMap 有什么区别?
SynchronizedMap 一次锁住整张表来保证线程安全,所以每次只能有一个线程来访为 map。
ConcurrentHashMap 使用分段锁来保证在多线程下的性能。
ConcurrentHashMap 中则是一次锁住一个桶。ConcurrentHashMap 默认将hash 表分为 16 个桶,诸如 get,put,remove 等常用操作只锁当前需要用到的桶。
这样,原来只能一个线程进入,现在却能同时有 16 个写线程执行,并发性能的提升是显而易见的。
另外 ConcurrentHashMap 使用了一种不同的迭代方式。在这种迭代方式中,当iterator 被创建后集合再发生改变就不再是抛出
ConcurrentModificationException,取而代之的是在改变时 new 新的数据从而不影响原有的数据 ,iterator 完成后再将头指针替换为新的数据 ,这样 iterator线程可以使用原来老的数据,而写线程也可以并发的完成改变。
37、CopyOnWriteArrayList 可以用于什么应用场景?
CopyOnWriteArrayList(免锁容器)的好处之一是当多个迭代器同时遍历和修改这个列表时,不会抛出 ConcurrentModificationException。在CopyOnWriteArrayList 中,写入将导致创建整个底层数组的副本,而源数组将保留在原地,使得复制的数组在被修改时,读取操作可以安全地执行。
1、由于写操作的时候,需要拷贝数组,会消耗内存,如果原数组的内容比较多的情况下,可能导致 young gc 或者 full gc;
2、不能用于实时读的场景,像拷贝数组、新增元素都需要时间,所以调用一个 set操作后,读取到数据可能还是旧的,虽然 CopyOnWriteArrayList 能做到最终一致性,但是还是没法满足实时性要求;
CopyOnWriteArrayList 透露的思想
1、读写分离,读和写分开
2、最终一致性
3、使用另外开辟空间的思路,来解决并发冲突
38、什么叫线程安全?servlet 是线程安全吗?
线程安全是编程中的术语,指某个函数、函数库在多线程环境中被调用时,能够正确地处理多个线程之间的共享变量,使程序功能正确完成。
Servlet 不是线程安全的,servlet 是单实例多线程的,当多个线程同时访问同一个方法,是不能保证共享变量的线程安全性的。
Struts2 的 action 是多实例多线程的,是线程安全的,每个请求过来都会 new 一个新的 action 分配给这个请求,请求完成后销毁。
SpringMVC 的 Controller 是线程安全的吗?不是的,和 Servlet 类似的处理流程。
Struts2 好处是不用考虑线程安全问题;Servlet 和 SpringMVC 需要考虑线程安全问题,但是性能可以提升不用处理太多的 gc,可以使用 ThreadLocal 来处理多线程的问题。
39、volatile 有什么用?能否用一句话说明下 volatile 的应用场景?
volatile 保证内存可见性和禁止指令重排。
volatile 用于多线程环境下的单次操作(单次读或者单次写)。
40、为什么代码会重排序?
在执行程序时,为了提供性能,处理器和编译器常常会对指令进行重排序,但是不能随意重排序,不是你想怎么排序就怎么排序,它需要满足以下两个条件:
在单线程环境下不能改变程序运行的结果;
存在数据依赖关系的不允许重排序
需要注意的是:重排序不会影响单线程环境的执行结果,但是会破坏多线程的执行语义。
41、在 java 中 wait 和 sleep 方法的不同?
最大的不同是在等待时 wait 会释放锁,而 sleep 一直持有锁。Wait 通常被用于线程间交互,sleep 通常被用于暂停执行。
42、用 Java 实现阻塞队列
43、一个线程运行时发生异常会怎样?
如果异常没有被捕获该线程将会停止执行。Thread.UncaughtExceptionHandler是用于处理未捕获异常造成线程突然中断情况的一个内嵌接口。当一个未捕获异常将造成线程中断的时候 JVM 会使用 Thread.getUncaughtExceptionHandler()来查询线程的 UncaughtExceptionHandler 并将线程和异常作为参数传递给handler 的 uncaughtException()方法进行处理。
44、如何在两个线程间共享数据?
在两个线程间共享变量即可实现共享。
一般来说,共享变量要求变量本身是线程安全的,然后在线程内使用的时候,如果有对共享变量的复合操作,那么也得保证复合操作的线程安全性。
45、Java 中 notify 和 notifyAll 有什么区别?
notify() 方法不能唤醒某个具体的线程,所以只有一个线程在等待的时候它才有用武之地。而 notifyAll()唤醒所有线程并允许他们争夺锁确保了至少有一个线程能继续运行。
46、为什么 wait, notify 和 notifyAll 这些方法不在 thread类里面?
一个很明显的原因是 JAVA 提供的锁是对象级的而不是线程级的,每个对象都有锁,通过线程获得。由于 wait,notify 和 notifyAll 都是锁级别的操作,所以把他们定义在 Object 类中因为锁属于对象。
47、什么是 ThreadLocal 变量?
ThreadLocal 是 Java 里一种特殊的变量。每个线程都有一个 ThreadLocal 就是每个线程都拥有了自己独立的一个变量,竞争条件被彻底消除了。它是为创建代价高昂的对象获取线程安全的好方法,比如你可以用 ThreadLocal 让SimpleDateFormat 变成线程安全的,因为那个类创建代价高昂且每次调用都需要创建不同的实例所以不值得在局部范围使用它,如果为每个线程提供一个自己独有的变量拷贝,将大大提高效率。首先,通过复用减少了代价高昂的对象的创建个数。其次,你在没有使用高代价的同步或者不变性的情况下获得了线程安全。
48、Java 中 interrupted 和 isInterrupted 方法的区别?
interrupt
interrupt 方法用于中断线程。调用该方法的线程的状态为将被置为”中断”状态。
注意:线程中断仅仅是置线程的中断状态位,不会停止线程。需要用户自己去监视线程的状态为并做处理。支持线程中断的方法(也就是线程中断后会抛出interruptedException 的方法)就是在监视线程的中断状态,一旦线程的中断状态被置为“中断状态”,就会抛出中断异常。
interrupted
查询当前线程的中断状态,并且清除原状态。如果一个线程被中断了,第一次调用 interrupted 则返回 true,第二次和后面的就返回 false 了。
isInterrupted
仅仅是查询当前线程的中断状态
49、为什么 wait 和 notify 方法要在同步块中调用?
Java API 强制要求这样做,如果你不这么做,你的代码会抛出IllegalMonitorStateException 异常。还有一个原因是为了避免 wait 和 notify之间产生竞态条件。
50、为什么你应该在循环中检查等待条件?
处于等待状态的线程可能会收到错误警报和伪唤醒,如果不在循环中检查等待条件,程序就会在没有满足结束条件的情况下退出。
51、Java 中的同步集合与并发集合有什么区别?
同步集合与并发集合都为多线程和并发提供了合适的线程安全的集合,不过并发集合的可扩展性更高。在 Java1.5 之前程序员们只有同步集合来用且在多线程并发的时候会导致争用,阻碍了系统的扩展性。Java5 介绍了并发集合像ConcurrentHashMap,不仅提供线程安全还用锁分离和内部分区等现代技术提高了可扩展性。
52、什么是线程池?为什么要使用它?
创建线程要花费昂贵的资源和时间,如果任务来了才创建线程那么响应时间会变长,而且一个进程能创建的线程数有限。为了避免这些问题,在程序启动的时候就创建若干线程来响应处理,它们被称为线程池,里面的线程叫工作线程。从JDK1.5 开始,Java API 提供了 Executor 框架让你可以创建不同的线程池。
53、怎么检测一个线程是否拥有锁?
在 java.lang.Thread 中有一个方法叫 holdsLock(),它返回 true 如果当且仅当当前线程拥有某个具体对象的锁。
54、你如何在 Java 中获取线程堆栈?
kill -3 [java pid]
不会在当前终端输出,它会输出到代码执行的或指定的地方去。比如,kill -3
tomcat pid, 输出堆栈到 log 目录下。
Jstack [java pid]
这个比较简单,在当前终端显示,也可以重定向到指定文件中。
-JvisualVM:Thread Dump
不做说明,打开 JvisualVM 后,都是界面操作,过程还是很简单的。
55、JVM 中哪个参数是用来控制线程的栈堆栈小的?
-Xss 每个线程的栈大小
56、Thread 类中的 yield 方法有什么作用?
使当前线程从执行状态(运行状态)变为可执行态(就绪状态)。
当前线程到了就绪状态,那么接下来哪个线程会从就绪状态变成执行状态呢?可能是当前线程,也可能是其他线程,看系统的分配了。
57、Java 中 ConcurrentHashMap 的并发度是什么?
ConcurrentHashMap 把实际 map 划分成若干部分来实现它的可扩展性和线程安全。这种划分是使用并发度获得的,它是 ConcurrentHashMap 类构造函数的一个可选参数,默认值为 16,这样在多线程情况下就能避免争用。
在 JDK8 后,它摒弃了 Segment(锁段)的概念,而是启用了一种全新的方式实现,利用 CAS 算法。同时加入了更多的辅助变量来提高并发度,具体内容还是查看源码吧。
58、Java 中 Semaphore 是什么?
Java 中的 Semaphore 是一种新的同步类,它是一个计数信号。从概念上讲,从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个acquire(),然后再获取该许可。每个 release()添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。信号量常常用于多线程的代码中,比如数据库连接池。
59、Java 线程池中 submit() 和 execute()方法有什么区别?
两个方法都可以向线程池提交任务,execute()方法的返回类型是 void,它定义在Executor 接口中。
而 submit()方法可以返回持有计算结果的 Future 对象,它定义在ExecutorService 接口中,它扩展了 Executor 接口,其它线程池类像ThreadPoolExecutor 和 ScheduledThreadPoolExecutor 都有这些方法。
60、什么是阻塞式方法?
阻塞式方法是指程序会一直等待该方法完成期间不做其他事情,ServerSocket 的accept()方法就是一直等待客户端连接。这里的阻塞是指调用结果返回之前,当前线程会被挂起,直到得到结果之后才会返回。此外,还有异步和非阻塞式方法在任务完成前就返回。
61、Java 中的 ReadWriteLock 是什么?
读写锁是用来提升并发程序性能的锁分离技术的成果。
62、volatile 变量和 atomic 变量有什么不同?
Volatile 变量可以确保先行关系,即写操作会发生在后续的读操作之前, 但它并不能保证原子性。例如用 volatile 修饰 count 变量那么 count++ 操作就不是原子性的。
而 AtomicInteger 类提供的 atomic 方法可以让这种操作具有原子性如getAndIncrement()方***原子性的进行增量操作把当前值加一,其它数据类型和引用变量也可以进行相似操作。
63、可以直接调用 Thread 类的 run ()方法么?
当然可以。但是如果我们调用了 Thread 的 run()方法,它的行为就会和普通的方法一样,会在当前线程中执行。为了在新的线程中执行我们的代码,必须使用Thread.start()方法。
64、如何让正在运行的线程暂停一段时间?
我们可以使用 Thread 类的 Sleep()方法让线程暂停一段时间。需要注意的是,这并不会让线程终止,一旦从休眠中唤醒线程,线程的状态将会被改变为 Runnable,并且根据线程调度,它将得到执行。
65、你对线程优先级的理解是什么?
每一个线程都是有优先级的,一般来说,高优先级的线程在运行时会具有优先权,但这依赖于线程调度的实现,这个实现是和操作系统相关的(OS dependent)。我们可以定义线程的优先级,但是这并不能保证高优先级的线程会在低优先级的线程前执行。线程优先级是一个 int 变量(从 1-10),1 代表最低优先级,10 代表最高优先级。
java 的线程优先级调度会委托给操作系统去处理,所以与具体的操作系统优先级有关,如非特别需要,一般无需设置线程优先级。
66、什么是线程调度器(Thread Scheduler)和时间分片(Time Slicing )?
线程调度器是一个操作系统服务,它负责为 Runnable 状态的线程分配 CPU 时间。一旦我们创建一个线程并启动它,它的执行便依赖于线程调度器的实现。同上一个问题,线程调度并不受到 Java 虚拟机控制,所以由应用程序来控制它是更好的选择(也就是说不要让你的程序依赖于线程的优先级)。
时间分片是指将可用的 CPU 时间分配给可用的 Runnable 线程的过程。分配 CPU时间可以基于线程优先级或者线程等待的时间。
67、你如何确保 main()方法所在的线程是 Java 程序最后结束的线程?
我们可以使用 Thread 类的 join()方法来确保所有程序创建的线程在 main()方法退出前结束。
68、线程之间是如何通信的?
当线程间是可以共享资源时,线程间通信是协调它们的重要的手段。Object 类中wait()\notify()\notifyAll()方法可以用于线程间通信关于资源的锁的状态。
69、为什么线程通信的方法 wait(), notify()和 notifyAll()被定义在 Object 类里?
Java 的每个对象中都有一个锁(monitor,也可以成为监视器) 并且 wait(),notify()等方法用于等待对象的锁或者通知其他线程对象的监视器可用。在 Java 的线程中并没有可供任何对象使用的锁和同步器。这就是为什么这些方法是 Object 类的一部分,这样 Java 的每一个类都有用于线程间通信的基本方法。
70、为什么 wait(), notify()和 notifyAll ()必须在同步方法或者同步块中被调用?
当一个线程需要调用对象的 wait()方法的时候,这个线程必须拥有该对象的锁,接着它就会释放这个对象锁并进入等待状态直到其他线程调用这个对象上的 notify()方法。同样的,当一个线程需要调用对象的 notify()方法时,它会释放这个对象的锁,以便其他在等待的线程就可以得到这个对象锁。由于所有的这些方法都需要线程持有对象的锁,这样就只能通过同步来实现,所以他们只能在同步方法或者同步块中被调用。
71、为什么 Thread 类的 sleep()和 yield ()方法是静态的?
Thread 类的 sleep()和 yield()方法将在当前正在执行的线程上运行。所以在其他处于等待状态的线程上调用这些方法是没有意义的。这就是为什么这些方法是静态的。它们可以在当前正在执行的线程中工作,并避免程序员错误的认为可以在其他非运行线程调用这些方法。
72、如何确保线程安全?
在 Java 中可以有很多方法来保证线程安全——同步,使用原子类(atomic concurrent classes),实现并发锁,使用 volatile 关键字,使用不变类和线程安全类。
73、同步方法和同步块,哪个是更好的选择?
同步块是更好的选择,因为它不会锁住整个对象(当然你也可以让它锁住整个对象)。同步方***锁住整个对象,哪怕这个类中有多个不相关联的同步块,这通常会导致他们停止执行并需要等待获得这个对象上的锁。
同步块更要符合开放调用的原则,只在需要锁住的代码块锁住相应的对象,这样从侧面来说也可以避免死锁。
74、如何创建守护线程?
使用 Thread 类的 setDaemon(true)方法可以将线程设置为守护线程,需要注意的是,需要在调用 start()方法前调用这个方法,否则会抛出IllegalThreadStateException 异常。
75、什么是 Java Timer 类?如何创建一个有特定时间间隔的任务?
java.util.Timer 是一个工具类,可以用于安排一个线程在未来的某个特定时间执行。Timer 类可以用安排一次性任务或者周期任务。
java.util.TimerTask 是一个实现了 Runnable 接口的抽象类,我们需要去继承这个类来创建我们自己的定时任务并使用 Timer 去安排它的执行。
1:谈谈JVM的类加载机制,每个部分详细描述
类从加载到虚拟机到卸载,它的整个生命周期包括:加载(Loading),验证(Validation),
准备(Preparation),解析(Resolution),初始化(Initialization),使用(Using)和卸载(Unloading)。
其中,验证、准备和解析部分被称为连接(Linking)。
加载:
1.通过一个类的全限定名(com.lkl.xxx)来获取定义此类的二进制字节流到JVM中
2.JVM将这个字节流所代表的静态存储结构转化为方法区域的运行时数据结构。
3.在 Java 堆中生成一个代表这个类的 java.lang.Class 对象,作为方法区域数据的访问入口。
在虚拟机提供了3种类加载器,引导(Bootstrap)类加载器、扩展(Extension)类加载器、系统(System)类加载器(也称应用类加载器)
验证:
验证阶段作用是保证 Class 文件的字节流包含的信息符合 JVM 规范,不会给 JVM 造成危害。
如果验证失败,就会抛出一个 java.lang.VerifyError 异常或其子类异常。验证过程分为四个阶段:
1.文件格式验证:验证字节流文件是否符合 Class 文件格式的规范,并且能被当前虚拟机正确的处理。
2.元数据验证:是对字节码描述的信息进行语义分析,以保证其描述的信息符合 Java 语言的规范。
3.字节码验证:主要是进行数据流和控制流的分析,保证被校验类的方法在运行时不会危害虚拟机。
4.符号引用验证:符号引用验证发生在虚拟机将符号引用转化为直接引用的时候,这个转化动作将在解析阶段中发生。
准备:
准备阶段为类变量分配内存并设置类变量的初始化。对已非 final 的变量,JVM 会将其设置成“零值”,而不是
其赋值语句的值:如果pirvate static int size = 12;那么在这个阶段,size 的值为 0,而不是 12。 final 修饰的类变量将会赋值成真实的值。
解析:
将常量池内的符号引用替换成直接引用。主要包括四种类型引用的解析。类或接口、字段、方法、接口方法。
举个例子来说,现在调用方法hello(),这个方法的地址是1234567,那么hello就是符号引用,1234567就是直接引用。
初始化:
在准备阶段,类变量已经经过一次初始化了,在这个阶段,只对static修饰的变量或语句进行初始化
至于使用和卸载阶段阶段,这里不再过多说明,使用过程就是根据程序定义的行为执行,卸载由 GC 完成。JVM 内存分配策略,优先放于 eden 区、动态对象年龄判断、分配担保策略等。