一、简介在机器学习中,有几个重要的现象和技术对于模型的训练和泛化能力起着至关重要的作用。过拟合(Overfitting)是指在训练数据上表现良好,但在未见过的测试数据上表现较差的现象。过拟合发生时,模型在训练集上学习到了数据的噪声和细节,而未能捕获数据的通用规律。过拟合通常发生在模型复杂度过高、训练数据过少或者特征过于丰富的情况下。解决过拟合的常用方法是增加训练数据、减少模型复杂度,或者使用正则化技术。欠拟合(Underfitting)是指模型在训练数据上无法很好地拟合,导致训练和测试误差都较大的现象。欠拟合通常发生在模型复杂度不足或者训练数据质量较差的情况下。解决欠拟合的常用方法包括增加模型...