import math import numpy as np def sigmoid(x): return 1/(1+np.exp(-x)) def single_neuron_model(features, labels, weights, bias): single = np.dot(features,weights)+bias pred = sigmoid(single) probabilities = np.round(pred,4).tolist() mse = np.sum((pred-labels)**2)/len(pred) mse = np.round(mse,4) retu...