时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 256M,其他语言512M 热度指数:697
本题知识点: 动态规划
算法知识视频讲解

题目描述


一座大楼有层,地面算作第0层,最高的一层为第 层。已知棋子从第0层掉落肯定不会摔碎,从第层掉落可能会摔碎,也可能不会摔碎。给定整数作为楼层数,再给定整数作为棋子数,返回如果想找到棋子不会摔碎的最高层数,即使在最差的情况下扔的最小次数。一次只能扔一个棋子。

示例1

输入

复制
10,1

输出

复制
10

说明

因为只有1棵棋子,所以不得不从第1层开始一直试到第10层,在最差的情况下,即第10层是不会摔坏的最高层,最少也要扔10次 
示例2

输入

复制
3,2

输出

复制
2

说明

先在2层扔1棵棋子,如果碎了,试第1层,如果没碎,试第3层 
示例3

输入

复制
105,2

输出

复制
14

说明

第一个棋子先在14层扔,碎了则用仅存的一个棋子试1~13层
若没碎,第一个棋子继续在27层扔,碎了则用仅存的一个棋子试15~26层
若没碎,第一个棋子继续在39层扔,碎了则用仅存的一个棋子试28~38层
若没碎,第一个棋子继续在50层扔,碎了则用仅存的一个棋子试40~49层
若没碎,第一个棋子继续在60层扔,碎了则用仅存的一个棋子试51~59层
若没碎,第一个棋子继续在69层扔,碎了则用仅存的一个棋子试61~68层
若没碎,第一个棋子继续在77层扔,碎了则用仅存的一个棋子试70~76层
若没碎,第一个棋子继续在84层扔,碎了则用仅存的一个棋子试78~83层
若没碎,第一个棋子继续在90层扔,碎了则用仅存的一个棋子试85~89层
若没碎,第一个棋子继续在95层扔,碎了则用仅存的一个棋子试91~94层
若没碎,第一个棋子继续在99层扔,碎了则用仅存的一个棋子试96~98层
若没碎,第一个棋子继续在102层扔,碎了则用仅存的一个棋子试100、101层
若没碎,第一个棋子继续在104层扔,碎了则用仅存的一个棋子试103层
若没碎,第一个棋子继续在105层扔,若到这一步还没碎,那么105便是结果

备注: