数据分析流程主要分为以下几个步骤:
1、明确目的
我们做任何事情都要有目的,数据分析也不例外。我们主要通过用户、需求、场景来拆解数据分析目的。
用户
公司内部部门
可以是公司内部部门,比如我之前经历过的一家公司,某部门需要对产品下单环节每一步骤的uv做统计,从而制作漏斗模型,优化产品设计。这就需要相关部门人员去找BI团队,拉取相关数据。
外部客户
一些外部客户不具备某一行业的数据,但它又需要了解这个行业的用户和市场,而你由于自己的产品定位或者资源,具备相关数据,从而可以做出数据产品,供外部客户使用,在满足你自身数据变现需求的同时,也满足外部客户需求。
需求
用户想通过数据达到一个什么样目的?是提升相关业务指标还是发现问题?只有明确目的才能制定合理的数据分析思路。
场景
场景更多体现的是数据分析的场景。比如上面的某部门想知道用户下单环节的每一步骤的uv,从而制作漏斗模型,优化下单支付环节,提高交易量,这就是场景。要根据场景去定义问题,梳理数据分析思路,选择数据分析的方法。
2、数据收集
一般情况下,每个公司都有自己的一些服务器和数据库。那这个时候,如果你要去提取这些数据,需要会一些简单的SQL语言产品经理学SQL(五),这一点是非常重要的,因为你数据收集的程度和准确性往往就决定了你数据分析结果的可靠性和有效性。
1、明确目的
我们做任何事情都要有目的,数据分析也不例外。我们主要通过用户、需求、场景来拆解数据分析目的。
用户
公司内部部门
可以是公司内部部门,比如我之前经历过的一家公司,某部门需要对产品下单环节每一步骤的uv做统计,从而制作漏斗模型,优化产品设计。这就需要相关部门人员去找BI团队,拉取相关数据。
外部客户
一些外部客户不具备某一行业的数据,但它又需要了解这个行业的用户和市场,而你由于自己的产品定位或者资源,具备相关数据,从而可以做出数据产品,供外部客户使用,在满足你自身数据变现需求的同时,也满足外部客户需求。
需求
用户想通过数据达到一个什么样目的?是提升相关业务指标还是发现问题?只有明确目的才能制定合理的数据分析思路。
场景
场景更多体现的是数据分析的场景。比如上面的某部门想知道用户下单环节的每一步骤的uv,从而制作漏斗模型,优化下单支付环节,提高交易量,这就是场景。要根据场景去定义问题,梳理数据分析思路,选择数据分析的方法。
2、数据收集
一般情况下,每个公司都有自己的一些服务器和数据库。那这个时候,如果你要去提取这些数据,需要会一些简单的SQL语言产品经理学SQL(五),这一点是非常重要的,因为你数据收集的程度和准确性往往就决定了你数据分析结果的可靠性和有效性。
全部评论
相关推荐
05-19 19:57
蚌埠学院 Python 点赞 评论 收藏
分享