大AI时代怎么准备简历项目?

算法岗越来越卷,还在纠结简历写什么? 拒绝千篇一律的“minist手写数字识别”! 今天盘点 3 个不同技术方向的硬核项目,建议根据自己的赛道,选一个死磕到底!👇

1️⃣ 【LLM 应用赛道】—— 紧跟风口  📂 项目:基于 LangChain + RAG 的垂直领域问答助手

为什么做: 现在 10 家面试 8 家问大模型。不懂 RAG(检索增强生成)真的很难聊!

核心考点: 向量数据库 (Milvus/Faiss)、Prompt Engineering、文档切片策略、甚至 LoRA 微调。

一句话亮点: “解决了大模型幻觉问题,实现了基于本地私有数据的精准问答。”

2️⃣ 【硬核基建赛道】—— 专治手痒  📂 项目:从零手撸 Transformer (Pytorch复现)

为什么做: 别只做“调包侠”!面试问 Multi-head Attention 细节又又又卡壳了?

核心考点: Self-Attention 矩阵计算、Positional Encoding 原理、Mask 机制。

一句话亮点: “不依赖高级 API,从底层张量运算构建模型,深入理解 Attention 机制。”

3️⃣ 【AIGC 视觉赛道】—— 视觉魔法  📂 项目:Stable Diffusion 扩散模型复现与 LoRA 微调

为什么做: CV 岗已经从“识别”卷到了“生成”。不要再玩那个YOLO !

核心考点: DDPM/DDIM 采样原理、UNet 结构(mile-stone)、CLIP 多模态对齐、ControlNet 控制生成。

一句话亮点: “掌握 AIGC 核心流派,具备模型微调与可控图像生成能力。”

💡 最后的小建议: 项目在精不在多。 与其罗列 多 个 Demo,不如把其中一个吃透,把遇到的 Corner Case、性能优化、思考过程写进简历里。#一人推荐一个值得做的项目##简历#
全部评论

相关推荐

1.实习介绍2. Lora 原理(核心是低秩分解:将原始权重更新近似为两个低秩矩阵乘积,减少参数量,保留主导方向,训练高效)3.了解 DeepSpeed 吗,ZeRO -1, ZeRO -2和 ZeRO3分别做了哪些优化(1优化优化器状态,2优化梯度,3切分参数,全面节省显存)4. Qwen的模型结构是怎么样的,相比于 LLaMA,DeepSeek 有什么区别(Qwen采用GQA+SwiGLU+RMSNorm,和LLaMA架构非常相似,差异在训练数据和tokenizer中文支持更好;DeepSeek只用MoE/MLA架构,Qwen系列主要是Dense模型)5.怎么缓解大模型的幻觉问题(RAG,RLHF对齐,事实监督)6.大模型的 MoE 结构相比于 Dense 结构训练的难点在什么地方,DeepSeekMoE为什么效果好,有什么值得我们借鉴创新点(MoE面临负载不均衡、训练不稳定问题;DeepSeekMoE通过细粒度专家和共享专家设计提升稳定性和效果)7.知道FP16和BF16有什么区别吗,包括FP32和INT8这些,在训练大模型的时候,应该怎么选择(FP16精度高但易溢出,BF16动态范围大;训练常用BF16混合精度,推理用INT8量化加速)8.讲-下 RLHF 的流程,写-下 PPO和 DPO的 Loss表达式(训练奖励模型后用PPO/DPO优化策略:PPO Loss: policy ratio + KL 约束/ DPO Loss: logit preference diff + sigmoid binary loss)9.对于超长上下文业界一般是怎么做的,你知道 Qwen是怎么做的吗(业界常用ROPE 变体/滑动窗口注意力/稀疏注意力等:Qwen使用YaRN和窗口注意力扩展上下文)10.开放题:你觉得目前大模型的上限在哪里(推理能力、长期记忆、具身交互和能耗效率,需要架构创新和多模态融合突破)11.代码:152.乘积最大子数组
查看9道真题和解析
点赞 评论 收藏
分享
评论
3
2
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务