万德一面 20min结束

更新:状态变成二面了

1. 项目拷打
怎么应对高并发
redis分布式锁
怎么保证数据一致性
其他一堆业务问题

2. 线程池创建方式
3. 线程池常见参数
4. springboot常用注解
5. service换成component会有什么影响
6. linux怎么部署springboot项目
7. 不用docker的话怎么部署
8. jdk和jre是什么 什么关系

其他的忘了 没录音 没算法
全部评论
有结果吗?
点赞 回复 分享
发布于 2024-03-25 12:43 江苏
1
点赞 回复 分享
发布于 2024-03-14 21:53 广东
万得态度真不行,两个面试官面试听着语气急得不行,面了我差不多30-40分钟。问你八股直到你不会为止,直接挂。
点赞 回复 分享
发布于 2024-03-14 00:13 贵州
大佬在哪里投的,官网吗
点赞 回复 分享
发布于 2024-03-13 16:15 浙江

相关推荐

06-20 16:49
已编辑
字节跳动_llm开发(实习员工)
大家很多人私信我大模型应用开发具体是做啥,正好我讲讲在字节实习3个月+的体验。现在以字节为例我看很多岗位,其实大模型应用岗位已经被纳入后端开发(大多还是属于开发序列,至少我看不在算法序列)当中了,所以总的来说二者并没有特别明显的区别,起码在公司的角度来看。以我自己为例,我也是面的后端岗位然后进来做Agent的开发,Agent开发暂时不涉及模型的训练,最多包含一些模型的微调(而且公司有平台)。总的来说,Agent开发主要是搭建workflow,主要涉及Rag、微调、Mcp、Prompt这些方面,包含一些技术栈py:langgraph、langchain、langSmith,java: SpringAI、langchain4j?,所以我觉得后端的同学直接投问题不大,但是需要python or java or 大模型基本知识的landing。我之前也没接触过类似的知识,还在字节里面有LLM学习季的好东西,包含了大模型的基本知识Transformer、Prompt工程、Rag实战等等各种基本知识的解释和实操,让我非常循序并循序渐进的了解了这方面的知识,并且燃起了对大模型学习的兴趣,不得不说这一点还是很值得学习的。其次,就是在实习过程中,大家讨论的都是如何提高大模型产生的效果、以及有没有更加方便的Agent工具能够参与 or 使用提效,整体氛围很不错,而且都是去聊一些比较新的东西,例如之前刚出的Agent2Agent协议。在我看来,Agent主要是以Multi-Agent写作文的形式完成一系列任务,例如Deep-Research利用搜索、爬虫等工具,获取想要查询的网页并爬取文章内容,并且生成一篇分析报告,包括了一些意图识别、任务规划、记忆、工具调用等。在这个过程可以加很多环节去提高分析报告的效果(在Prompt的层面),例如反思、自问自答、知识库、human-in-loop等等,我觉得设计这些环节还是需要很多经验的,目前很多需要参考了类似的设计有比如cursor等。至于学历的要求,不知道现在岗位需不需要硕士的学历,但是我看来其实本科也能做,包括我在的组很多Agent内容在Cursor、Trae等工具的辅助下,前端也参与了不少(没错,前端也写Agent)。所以现在在各种Agent工具不断出现的今天,大厂更加需要“能够熟练使用AI工具的人”。举例,本组有个本科校招生,ld说后续会让他参与LLM的开发内容。当然,以上是我3个月浅薄的理解,我其实也看了不少内容的一些技术文章,整体来说大概是个这么情况,感觉技术壁垒不深,但是基于目前资料跟Java(黑马)比有所欠缺的情况下,还是筛掉了相当一部分人,感觉可冲(感觉比较缺人,至少我们组人很缺);但是基于我之前很多段实习都是Java开发,我觉得大模型应用更在乎大模型的效果而不是性能,可能还是关注点会跟Java开发有一些区别,优先级不一样,很少用到一些中间件来做啥,目前我在整个过程中只用过Redis来缓存stream流。实习体验:1.需求:字节跟我实习过的其他大厂有很明显的区别,他是直接安排活让你去做,至于你做不做得了,这个就另说了(即使有mentor的帮助)。有个群友举的例子很好“就是把一个不会游泳的初学者丢进水池里,如果活下来了,就学会了哈哈”。所以在我很久没写py、langchain等内容的基础上、没在字节做过任何需求的时候,让我开发了一个我认为很大的一个需求,大概6-7000行(两周),我为了不延期,主动加班到10-11点,才在排期前做完。。2.福利:经历了字节下午茶的LastDay目前已经没啥福利了,零食、水果还是不错;其次,允许实习生出差,刚来没几天就团建 + 出差去北京(出差了一周),那段时间还是很滋润的,在北京也小小旅游了一下(带着女朋友一起去了,当然她的不报销,只是住在一起)3.博客:当初在快手实习的时候,基本上看遍了Kstack的文章,但是在字节我目前还没看完,而且受益匪浅,感觉文章整体含金量要高不少(可能快手现在也变好了,不尬黑)。4.带教:mentor和ld对我很好,也让我进入了一个新的领域,目前正好考虑通过这次机会往大模型应用甚至大模型算法转型.正好有学长跟我说过,“阿里很值得去实习体验一次,哪怕不留下来”,我觉得“字节也很值得去体验一次,哪怕不留下来”,之前在前几家公司反而没这么深刻的感悟。如果对各位有帮助的话,求求🥺给朵小红花,有问题可以在评论区交流~
错开的雪季:mark感谢分享
投递字节跳动等公司9个岗位
点赞 评论 收藏
分享
1.自我介绍,拷打项目为什么用多智能体不用单智能体了解哪些大模型应用框架(你项目中的竞品)rag知识库是怎么搭建的,怎么进行的分片操作如何让大模型更加理解医学名词(一般大模型理解不了医学名词)知识库的大小,我答了一个很大的数,问接口速度问题(一脸懵逼,没考虑过,只考虑过rag层面的优化)询问rag评估(孩子寄了我没做,但是我背过),问具体评估数值(🐔没做过,瞎逼逼了一个数字)优化空间从项目拷打中看的出来面试官水平确实比较高,而且是个声音很好听的小哥哥2.写算法,尽然是acm格式,幸好函数写出来了,可惜的是输入输出没写出来,链表的输入输出真的难3.反问环节:做什么业务,不足之处
梗小姐:佬,你投的不会是这个吧。 wxg-微信支付-模型组 主要工作方向: 1.利用支付数据、社交数据等制定安全策略进行数据挖掘、特征工程 2.前沿模型研究:利用LLM代替xgboost等传统风控模型 本次实习生,可能的工作:使用司内大模型平台进行agent构建,集成到企业微信机器人里,作为内部工具以消息告警等形式提醒产品同学,其实还是偏开发。 掌握python和java应该够用了。 需要掌握的基本知识 简单的开发技能 agent基本原理(重点:function call,可能会被问了解mcp吗) LLM基本知识(训练、微调和部署推理,偏工程化),最好再掌握一些RAG知识
查看14道真题和解析
点赞 评论 收藏
分享
1️⃣自我介绍:【⌚️10分钟】点评:流水账,有些磕磕绊绊,自我介绍环节的项目介绍的很详细,非常冗余。优化:写逐字稿,背诵,提升语言表达能力。2️⃣经常问题的问题优化:【⌚️20分钟】1:transform结构了解吗?回答点评:回答的很简单,5分吧,说了transform的结构是encode-decode结构,分块,每个块里面有四个组建,MHA、FFN、LN、残差链接,介绍和理解不深刻。提升指导:梳理回答逻辑结构,讲解MHA、FFN、LN、残差链接的添加逻辑和含义,其中MHA给出代码层面理解,从2分钟的回答变成6分钟的回答。2:多头自注意力机制是啥?公式是啥?代码你会写吗?回答点评:讲了公式,但是掌握的不够细致,pytorch代码框架不熟悉,attention_mask机制没有写出来。提升指导:讲述代码的原理,如何使用代码回答问题,展示自己的理解深刻。3:rag中的多路召回是什么?embeding为啥用智源的BGE-large/Base?回答点评:使用了BM25和向量召回,但是没有讲出来两个的区别和联系提升指导:先讲原理,再讲述下语义理解能力和泛化能力的区别,计算的效率,两个互为补充等。3️⃣不会回答的问题指导:【⌚️40分钟】1:  LN不太会回答,看网上的回答很多,但是不是理解层面。2:我的向量召回是faiss做的,和这个相关的问题我如何准备?3:经常会被问到rag用的啥框架,这个问题如何回答?还需要准备框架的知识吗?4:面试官经常问我,rag的模型是啥?有做微调吗?如果不做微调怎么回答?5:大模型还需要补充那些知识?📳对于想求职算法岗的同学,如果想参加高质量项目辅导,提升面试能力,欢迎后台联系。
查看8道真题和解析
点赞 评论 收藏
分享
评论
1
6
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务