算法工程师精选面经合集
11家公司
47篇面经
最新 热门
/feed/main/detail/5ab9cdc2e71a49cba439b522e0cc6d3f
昨天 14:41
已编辑
门头沟学院 算法工程师
影石算法工程师面经
面试是24年7月的现在已经入职几个月了,补一下面经,帮有需要的同学参考。BG:本硕985 计算机论文1A1B一面:技术面自我介绍 & 简历相关。简单介绍了自己在多模态和大模型方向的研究/工作经历,包括在校期间的论文工作以及实习经历。面试官主要针对简历上的项目提了一些细节问题,比如具体模型的量级,提升了多少,和哪些方法做了比较等。因为是自己的工作,所以没有卡壳。问有没有遇到过 Python 文件之间互相 import 的问题,出现这种问题怎么办?让我简单介绍了一下 PPO 算法,以及和 TRPO 的区别是什么?接着 PPO,问了一下 ChatGPT 的 RLHF 流程,以及为什么不直接用 SFT,而是要用强化这么麻烦的方式训练模型?继续追问 RLHF、SFT、LoRA 的区别,分别适用于什么场景?反问:公司现有业务是什么,计算资源情况等。二面:主管面论文介绍。让我用通俗的语言介绍我自己发表和投稿的论文,重点是研究动机和要解决的问题。问有没有亲手训练过大模型,最多用了多少张 GPU 卡?并行训练使用的框架是什么?介绍一下 DeepSpeed,说一下这个框架在并行的不同阶段(ZeRO stage)分别做了哪些事?训练模型的时候,数据量有多少,怎么收集数据的,训练花了多少时间?遇到的最大问题是什么?问在大模型全量微调时,显存消耗分别由哪些部分占用?(参数、梯度、优化器状态、激活信息等),分别占用多少?假设模型参数量为N,请分不同情况讨论和计算一下微调所需要的显存(不同精度、batch size、seq len 等)。说一下 LoRA 公式,讲一讲其中 A 和 B 两个矩阵分别表示什么。LoRA 的优缺点是什么,什么场景下适合使用?问知道哪些大模型训练和推理框架,用过哪些?问 LLaVA 的结构是什么,和常规的纯文本大模型有什么区别?Encoder-Decoder 结构的模型转 ONNX 的一般流程,遇到不支持的算子怎么办?可能遇到的问题(动态 shape、模型中逻辑判断需要单独写、模块拆分等)。三面:HR 面主要问了为什么选择公司,对团队的看法,对岗位的认识;未来大致的规划,面试过程的体验,有没有别的公司的 offer 等。以及询问了期望薪资等。之后就是等待,最终和期望薪资基本一致。总体感受面试流程比较顺畅,问题也比较贴合岗位要求;如果和岗位匹配度高,一般流程推进速度会很快。入职以后,工作内容和面试被问的问题也差不多,基本上都是算法工程师需要做的内容,团队氛围也很不错。只是毕竟是企业,不可能光搞研究,在承接业务时还是免不了和很多人打交道和来回battle需求,这个无可避免。
查看19道真题和解析
点赞 评论 收藏
分享
/feed/main/detail/8e869625faf24ad48721493b8be45f17/discuss/799595395209777152/feed/main/detail/8972a5ea6e004dacbdf169e78d1c22f9/discuss/799407562972987392/discuss/799383485810065408/discuss/799381560523849728/discuss/799395434392244224/discuss/799371978426564608/discuss/799365554074079232/discuss/799365261517242368/discuss/799335631733129216/discuss/799233891461611520/feed/main/detail/525935ff1382445581e2f7c17fe37944/discuss/799015389349806080/feed/main/detail/dbb89c9f7d5340f5b16005150d1857d2/feed/main/detail/f097d9f25b88478b86fcbbed6a6d358f/discuss/799004454992330752
快手大模型算法岗面经
查看16道真题和解析
点赞 评论 收藏
分享
/feed/main/detail/6acdd0f72e2a49d7bcedb2a5800b8755/feed/main/detail/7b19d9d17fde43acb394ca2f9342bcdb
玩命加载中
写面经
发动态
发动态
发帖子
写文章

全站热榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务