2022届秋招数据分析高频知识点汇总---数据处理

数据缺失值怎么处理?

对缺失值的处理要具体问题具体分析,为什么要具体问题具体分析呢?因为属性缺失有时并不意味着数据缺失,缺失本身是包含信息的,所以需要根据不同应用场景下缺失值可能包含的信息进行合理填充。


将数据集中不含缺失值的变量称为完全变量 ,数据集中含有缺失值的变量称为不完全变量 。从缺失的分布来将缺失可以分为完全随机缺失,随机缺失和完全非随机缺失 。

完全随机缺失(missing completely at random,MCAR):指的是数据的缺失是完全随机的,不依赖于任何不完全变量或完全变量,不影响样本的无偏性。如家庭地址缺失。

随机缺失(missing at random,MAR):指的是数据的缺失不是完全随机的,即该类数据的缺失依赖于其他完全变量。例如财务数据缺失情况与企业的大小有关。

非随机缺失(missing not at random,MNAR):指的是数据的缺失与不完全变量自身的取值有关。如高收入人群的不原意提供家庭收入。

对于随机缺失和非随机缺失,删除记录是不合适的,随机缺失可以通过已知变量对缺失值进行估计;而非随机缺失还没有很好的解决办法。


处理不完整数据集的方法主要有三大类: 删除元组、数据补齐、不处理 。

删除元组:

也就是将存在遗漏信息属性值的对象(元组,记录)删除,从而得到一个完备的信息表 。这种方法简单易行, 在对象有多个属性缺失值、被删除的含缺失值的对象与初始数据集的数据量相比非常小的情况下非常有效,类标号缺失时通常使用该方法。

然而,这种方法却有很大的局限性。 它以减少历史数据来换取信息的完备,会丢弃大量隐藏在这些对象中的信息。 在初始数据集包含的对象很少的情况下,删除少量对象足以严重影响信息的客观性和结果的正确性;因此,当缺失数据所占比例较大,特别当遗漏数据非随机分布时,这种方法可能导致数据发生偏离,从而引出错误的结论。

说明:删除元组,或者直接删除该列特征,有时候会导致性能下降。


数据补齐:

这类方法是用一定的值去填充空值,从而使信息表完备化。通常基于统计学原理, 根据初始数据集中其余对象取值的分布情况来对一个缺失值进行填充 。数据挖掘中常用的有以下几种补齐方法:

人工填写(filling manually)

由于最了解数据的还是用户自己,因此这个方法产生数据偏离最小,可能是填充效果最好的一种。然而一般来说,该方法很费时,当数据规模很大、空值很多的时候,该方法是不可行的。


平均值填充(Mean/Mode Completer)

将初始数据集中的属性分为数值属性和非数值属性来分别进行处理 。

如果空值是数值型的,就根据该属性在其他所有对象的取值的平均值来填充该缺失的属性值;

如果空值是非数值型的,就根据统计学中的众数原理 ,用该属性在其他所有对象的取值次数最多的值(即出现频率最高的值)来补齐该缺失的属性值。

与其相似的另一种方法叫条件平均值填充法(Conditional Mean Completer)。在该方法中,用于求平均的值并不是从数据集的所有对象中取,而是从与该对象具有相同决策属性值的对象中取得。

这两种数据的补齐方法,其基本的出发点都是一样的,以最大概率可能的取值来补充缺失的属性值,只是在具体方法上有一点不同。与其他方法相比,它是用现存数据的多数信息来推测缺失值。


热卡填充(Hot deck imputation,或就近补齐)

对于一个包含空值的对象,热卡填充法在完整数据中找到一个与它最相似的对象,然后用这个相似对象的值来进行填充。不同的问题可能会选用不同的标准来对相似进行判定。该方法概念上很简单,且利用了数据间的关系来进行空值估计。这个方法的缺点在于难以定义相似标准,主观因素较多。


K最近距离邻法(K-nearest neighbor

先根据欧式距离或相关分析来确定距离具有缺失数据样本最近的K个样本,将这K个值加权平均来估计该样本的缺失数据。

使用所有可能的值填充(Assigning All Possible values of the Attribute)

用空缺属性值的所有可能的属性取值来填充,能够得到较好的补齐效果。但是,当数据量很大或者遗漏的属性值较多时,其计算的代价很大,可能的测试方案很多。


组合完整化方法(Combinatorial Completer)

用空缺属性值的所有可能的属性取值来试,并从最终属性的约简结果中选择最好的一个作为填补的属性值。这是以约简为目的的数据补齐方法,能够得到好的约简结果;但是,当数据量很大或者遗漏的属性值较多时,其计算的代价很大。


回归(Regression)

基于完整的数据集,建立回归方程。对于包含空值的对象,将已知属性值代入方程来估计未知属性值,以此估计值来进行填充。当变量不是线性相关时会导致有偏差的估计。


期望值最大化方法(Expectation maximization,EM)

EM算法是一种在不完全数据情况下计算极大似然估计或者后验分布的迭代算法。在每一迭代循环过程中交替执行两个步骤:E步(Excepctaion step,期望步),在给定完全数据和前一次迭代所得到的参数估计的情况下计算完全数据对应的对数似然函数的条件期望;M步(Maximzation step,极大化步),用极大化对数似然函数以确定参数的值,并用于下步的迭代。算法在E步和M步之间不断迭代直至收敛,即两次迭代之间的参数变化小于一个预先给定的阈值时结束。该方法可能会陷入局部极值,收敛速度也不是很快,并且计算很复杂。


多重填补(Multiple Imputation,MI)

多重填补方法分为三个步骤:

为每个空值产生一套可能的填补值,这些值反映了无响应模型的不确定性;每个值都被用来填补数据集中的缺失值,产生若干个完整数据集合。

每个填补数据集合都用针对完整数据集的统计方法进行统计分析。

对来自各个填补数据集的结果进行综合,产生最终的统计推断,这一推断考虑到了由于数据填补而产生的不确定性。该方法将空缺值视为随机样本,这样计算出来的统计推断可能受到空缺值的不确定性的影响。该方法的计算也很复杂。


C4.5方法

通过寻找属性间的关系来对遗失值填充。它寻找之间具有最大相关性的两个属性,其中没有遗失值的一个称为代理属性,另一个称为原始属性,用代理属性决定原始属性中的遗失值。这种基于规则归纳的方法只能处理基数较小的名词型属性。

就几种基于统计的方法而言,删除元组法和平均值法差于热卡填充法、期望值最大化方法和多重填充法;回归是比较好的一种方法,但仍比不上hot deck和EM;EM缺少MI包含的不确定成分。值得注意的是,这些方法直接处理的是模型参数的估计而不是空缺值预测本身。它们合适于处理无监督学习的问题,而对有监督学习来说,情况就不尽相同了。譬如,你可以删除包含空值的对象用完整的数据集来进行训练,但预测时你却不能忽略包含空值的对象。另外,C4.5和使用所有可能的值填充方法也有较好的补齐效果,人工填写和特殊值填充则是一般不推荐使用的。


不处理:

补齐处理只是将未知值补以我们的主观估计值,不一定完全符合客观事实,在对不完备信息进行补齐处理的同时,我们或多或少地改变了原始的信息系统。而且,对空值不正确的填充往往将新的噪声引入数据中,使挖掘任务产生错误的结果。因此,在许多情况下,我们还是希望在保持原始信息不发生变化的前提下对信息系统进行处理。

不处理缺失值,直接在包含空值的数据上进行数据挖掘的方法包括贝叶斯网络和人工神经网络等。


总结

大多数数据挖掘系统都是在数据挖掘之前的数据预处理阶段采用第一、第二类方法来对空缺数据进行处理。并不存在一种处理空值的方法可以适合于任何问题。无论哪种方式填充,都无法避免主观因素对原系统的影响,并且在空值过多的情形下将系统完备化是不可行的。从理论上来说,贝叶斯考虑了一切,但是只有当数据集较小或满足某些条件(如多元正态分布)时完全贝叶斯分析才是可行的。而现阶段人工神经网络方法在数据挖掘中的应用仍很有限。值得一提的是,采用不精确信息处理数据的不完备性已得到了广泛的研究。不完备数据的表达方法所依据的理论主要有可信度理论、概率论、模糊集合论、可能性理论,D-S的证据理论等。


数据异常值怎么处理?

异常值处理:异常值,即在数据集中存在不合理的值,又称离群点。

判别方法:

1.简单统计分析

对属性值进行一个描述性的统计,从而查看哪些值是不合理的。比如对年龄这个属性进行规约:年龄的区间在[0:200],如果样本中的年龄值不再该区间范围内,则表示该样本的年龄属性属于异常值。

2. 3δ原则

当数据服从正态分布:

根据正态分布的定义可知,距离平均值3δ之外的概率为 P(|x-μ|>3δ) <= 0.003 ,这属于极小概率事件,在默认情况下我们可以认定,距离超过平均值3δ的样本是不存在的。 因此,当样本距离平均值大于3δ,则认定该样本为异常值。

当数据不服从正态分布,可以通过远离平均距离多少倍的标准差来判定,多少倍的取值需要根据经验和实际情况来决定

3.箱型图分析

箱型图提供了一个识别异常值的标准,即大于或小于箱型图设定的上下界的数值即为异常值

异常值的处理方法常用有四种:

1.删除含有异常值的记录

2.将异常值视为缺失值,交给缺失值处理方法来处理

3.用平均值来修正

4.不处理



数据失衡(倾斜)怎么处理?

数据不平衡又称样本比例失衡,    比如二分类问题,如果标签为1的样本占总数的99%,标签为0的样本占比1%则会导致判断「失误严重」,准确率虚高。

常见的解决不平衡问题的方法如下:

2.1 数据采样

数据采样通过对原始数据集进行处理,使各类别数据比例维持在一个合理的比例。可分为上采样和下采样。

(1)上采样。上采样(Oversampling)是通过把少量数据类别的数据重复复制的方法使各类别数据比例维持在合理的比例,但是基于这样采样方法训练出来的模型容易出现过拟合,可以在每次生成新数据的时候加入轻微随机扰动。

(2)下采样。下采样(Undersampling)是通过从多数数据类中筛选出部分数据使各类别数据比例维持在合理的比例,但是这种采样方法容易丢失关键数据,可以通过多次随机下采样来解决。

2.2 数据合成

数据合成是利用已有样本的特征相似性生成更多新的样本,主要应用在小数据场景下,如医学图像分析。

2.3 加权

加权的方法是通过对不同类别分类错误施加不同权重的代价,使得不同类别的加权损失值近似相等。

2.4 一分类

当正负样本比例严重失衡时,靠单纯的采样和数据合成已经并不能很好地解决问题。因为上述方法虽然解决了训练数据的正负样本比例问题,但却严重偏离了原始数据的真实分布情况,会导致模型训练结果并不能真正反映实际的情况,会有很大的偏差。

此时,可以考虑用一分类(One-class Classification)来解决。最常见的一分类方法是One-class SVM,其基本思路如下:利用高斯核函数将样本空间映射到核空间,在核空间中找到一个能够包含所有数据的一个球体,当进行判别时,如果测试数据位于这个高维球体之中,则将其归为多数类,否则就归为少数类。一分类除了可用来解决数据严重不平衡时的分类问题,还可以应用于金融和医疗领域的异常检测。


总结来说,在样本数据量较大,且正负样本比例相差并不悬殊(两个数量级以内)的情况下,可以考虑使用采样或加权的方法解决;在正负样本数据都非常之小时,可以考虑用数据合成的方法解决;在正负样本数据比例相差悬殊的情况下,可以考虑用一分类的方法解决。


数据归一化

一、min-max标准化(Min-Max Normalization)

也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 - 1]之间。转换函数如下:

其中max为样本数据的最大值,min为样本数据的最小值。这种方法有个缺陷就是当有新数据加入时,可能导致max和min的变化,需要重新定义。

二、Z-score标准化方法

这种方法给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。经过处理的数据符合标准正态分布,即均值为0,标准差为1,转化函数为:


#高频知识点汇总##学习路径#
全部评论
写的很好,有处笔误  “K最近距离邻法(K-means clustering)”  是 K-nearest neighbor  
1 回复
分享
发布于 2021-12-20 23:51
🎉恭喜牛友成功参与 【创作激励计划】高频知识点汇总专场,并通过审核! ------------------- 创作激励计划5大主题专场等你来写,最高可领取500元京东卡和500元实物奖品! 👉快来参加吧:https://www.nowcoder.com/discuss/804743
点赞 回复
分享
发布于 2021-12-15 11:18
阅文集团
校招火热招聘中
官网直投

相关推荐

5 41 评论
分享
牛客网
牛客企业服务