题解 | #游游出游#
游游出游
https://www.nowcoder.com/practice/e787b99f04c1498aa32b9430a4616d8a
而对于每个重量而言,能走的边是固定的,所以能不能到达 n 也是确定的,那么如果存在最终答案的重量 w ,所有大于等于 w 的重量一定也能到达 n ,而所有小于 w 的都不可能到达,所以我们可以二分
然后判断一个重量能不能到达就直接跑dijk
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int INF = 1e18;
const int N = 2e5 + 5;
int __t = 1, n;
vector<pair<int, pair<int, int>>> adj[N];
int dist[N];
bool dijkstra(int n, int h, int max_weight) {
fill(dist, dist + N, INF);
priority_queue<pair<int, int>, vector<pair<int, int>>,
greater<pair<int, int>>>
pq;
dist[1] = 0;
pq.push({0, 1});
while (!pq.empty()) {
int d = pq.top().first;
int u = pq.top().second;
pq.pop();
if (d > dist[u])
continue;
for (auto e : adj[u]) {
int v = e.first;
int w = e.second.first;
int len = e.second.second;
if (w >= max_weight && dist[u] + len < dist[v]) {
dist[v] = dist[u] + len;
pq.push({dist[v], v});
}
}
}
return dist[n] <= h;
}
void solve() {
int n, m, h;
cin >> n >> m >> h;
for (int i = 0; i < m; ++i) {
int u, v, w, d;
cin >> u >> v >> w >> d;
adj[u].emplace_back(v, make_pair(w, d));
adj[v].emplace_back(u, make_pair(w, d));
}
int l = 1, r = 1e9, ans = -1;
while (l <= r) {
int mid = (l + r) / 2;
if (dijkstra(n, h, mid)) {
ans = mid;
l = mid + 1;
} else {
r = mid - 1;
}
}
cout << ans << "\n";
}
int32_t main() {
#ifdef ONLINE_JUDGE
ios::sync_with_stdio(false);
cin.tie(0);
#endif
// cin >> __t;
while (__t--)
solve();
return 0;
}
