社招一年:滴滴算法面经(定价策略算法)

滴滴定价策略面经

校招时候就面过滴滴,整体感觉滴滴是面试体验最好的,面试官是以一种平等的态度来交流技术,即使有时候卡壳也会慢慢提醒(两次都拿了offer)

安利一下 牛客题霸
https://www.nowcoder.com/activity/oj
最近各大厂的视频面试都用牛客平台,要求编译运行,难度比白板写提升了,多写写练练手帮助很大,面试时候写个bug free的代码,拿到offer的概率大大提升

1面

  1. 项目,针对项目中的细节询问比较多,比如怎么抽象问题,损失函数怎么定的,为什么要选这个损失函数,正负样本怎么来的,怎么验证结果
  2. 算法题:求树深 时间复杂度(LeetCode easy,时间复杂度是O(N),因为要扫一遍所有的节点)
  3. 算法题:矩阵,只能向右或向下,求最大路径 时间空间复杂度(LeetCode easy 入门级的动态规划,时间复杂度O(M*N),空间复杂度O(N))
  4. linux基础:awk实现left join(算法工程师少不了的基本功,awk sed建议学一下,实际工作中也是很有用的)
  5. 机器学习基础:boosting和bagging的区别 (bagging就是投票策略,会降低方差,减小过拟合风险,boosting是降低偏差的策略,可以描述一下 Adaboost和gradient boost的区别)
  6. 梯度下降的更新公式,和梯度提升的区别 (这里可以继续结合boosting来说,梯度提升是在函数空间的,而梯度下降是在参数空间的)

2面

  1. 机器学习基础:xgb和gbdt区别(基本是必考题目,从主要的优化点说起,xgb是二阶泰勒展开,gbdt是一阶,可以类比牛顿法和梯度下降法的区别,牛顿法收敛更快,但是由于更快逼近目标,会增大过拟合风险,因此在目标函数里有一个显示的惩罚项,与叶子节点数和叶子节点的权重有关,来控制模型复杂度;另外还有分裂节点的选择,xgb怎么选取最优分裂节点,有哪些加速的优化之类的知识)
  2. 算法题:给一个字符串和一个k,要求找到不超过k个不同字符的最长子串的长度,on时间(LeetCode上的medium或者是偏简单的hard题目,用划窗的思路做)
  3. 概率题:2人抛硬币,正面赢,反面让另一个人抛,求先抛的人获胜的概率
  4. 深度学习基础:cnn和全连接的区别(参数共享,降低运算量)
  5. lstm有什么新的改进,替代(针对rnn来说 通过门电路把连乘转换成了连加,一定程度上缓解了梯度消失问题,梯度爆炸可以直接clip不需要考虑,另外就是广度了,lstm的应用和改进)

3面

  1. 预测一个城市不同区域一天的发单量,和滴滴业务相关,设计一些调度策略
  2. 预测一个城市不用区域的降水量(这个可以作为前一道题的特征)
  3. 判断用户感知是否顺路,给出思路(怎么获取训练数据,怎么去判断用户的感知到底顺不顺路,找一些简单的规则)
  4. 概率,抛硬币,连续两次正面向上为止,求次数期望
#滴滴##算法工程师##社招#
全部评论
大佬分析的题目都很不错,赞
1 回复
分享
发布于 2020-11-26 17:35
#滴滴算法工程师面经# #算法工程师面经# #社招面经# 👈点击话题查看更多同类面经干货!每日面经精选,为你发掘牛客干货!
点赞 回复
分享
发布于 2020-07-17 10:24
阅文集团
校招火热招聘中
官网直投
!!大佬tql
点赞 回复
分享
发布于 2020-07-17 11:32
请问是视频面试吗
点赞 回复
分享
发布于 2020-07-24 15:05
大佬+1
点赞 回复
分享
发布于 2020-08-04 10:58
请问是mpt吗
点赞 回复
分享
发布于 2021-12-15 17:35

相关推荐

【一面】对着项目问的比较多1. 线性回归的假设条件是什么2. 介绍lstm,transformer这些3. transformer相比于seq2seq,它的增量点在什么地方4. 因果推断和(事件发生前拟合一个模型,使用这个模型对事件发生后进行预测从而得到效应),增量在什么地方,有哪些本质上的区别(跟我的项目相关)5. 对于销量预测模型,你有什么思路;怎么进行模型选型;如果没有其他特征,只有按时间变化的销量,可以怎么预测?6. 一个人投篮的命中率是60%,是投10次至少命中7次的概率大,还是投100次至少命中70次的概率大(大数定律)7. 手撕:两个椭圆x^2+y^2/2=1,x^2/2+y^2=1,求这两个椭圆相交部分的面积(蒙特卡洛模拟,好像还可以使用极坐标直接求解,忘了)比较注重数理(可能也是因为我是数理出身)【二面】1. 50个黑球和50个白球,分别放进两个框,怎么放置,可以让一个人拿到白球的概率最大2. 一个细胞的生命有三个小时,每个小时都会分裂一次,到T时刻会有多少细胞呢?3. 希望在算法岗从事什么样子的工作4. 技术栈有哪些面试时间很短,面试官很佛系,没咋问【三面】1. 问对深度学习那块比较熟,回答时序预测,问有无读过现在的SOAT方法,回答无(没读过啥paper)2. 什么样的embedding是好的embeding,怎么评估3. 选择unieval模型是怎么做的模型选型4. 拿到一个新方向是怎么调研的,怎么去找论文的5. 介绍transformer,每个encoder的结构是什么6. 介绍self-attention7. 怎么理解q,k,v8. 可以使用同一个W_q和W_k吗9. 为什么q×k之后要scale,d 是什么10. 时空图(论文,但是别人做的这part,自己不太了解了)11. 手撕:打家劫舍(偏重对算法的理解,和项目实现上的一些细节)一二面反馈非常快,5分钟就会有下一面的反馈,三面无了,可能自己没过攒人品攒人品攒人品!许愿许愿许愿!
点赞 评论 收藏
转发
12 110 评论
分享
牛客网
牛客企业服务