【操作系统】④内存管理

一、内存管理基础

1. 操作系统的内存管理主要是做什么?

操作系统的内存管理主要负责内存的分配与回收(malloc 函数:申请内存,free 函数:释放内存),另外地址转换也就是将逻辑地址转换成相应的物理地址等功能也是操作系统内存管理做的事情。

2. 常见的几种内存管理机制

简单分为连续分配管理方式非连续分配管理方式这两种。连续分配管理方式是指为一个用户程序分配一个连续的内存空间,常见的如 块式管理 。同样地,非连续分配管理方式允许一个程序使用的内存分布在离散或者说不相邻的内存中,常见的如页式管理段式管理
  1. 块式管理 : 远古时代的计算机操系统的内存管理方式。将内存分为几个固定大小的块,每个块中只包含一个进程。如果程序运行需要内存的话,操作系统就分配给它一块,如果程序运行只需要很小的空间的话,分配的这块内存很大一部分几乎被浪费了。这些在每个块中未被利用的空间,我们称之为碎片。
  2. 页式管理 :把主存分为大小相等且固定的一页一页的形式,页较小,相对相比于块式管理的划分力度更大,提高了内存利用率,减少了碎片。页式管理通过页表对应逻辑地址和物理地址。
  3. 段式管理 : 页式管理虽然提高了内存利用率,但是页式管理其中的页实际并无任何实际意义。 段式管理把主存分为一段段的,段是有实际意义的,每个段定义了一组逻辑信息,例如,有主程序段 MAIN、子程序段 X、数据段 D 及栈段 S 等。 段式管理通过段表对应逻辑地址和物理地址。
  4. 段页式管理机制 :段页式管理机制结合了段式管理和页式管理的优点。简单来说段页式管理机制就是把主存先分成若干段,每个段又分成若干页,也就是说段页式管理机制中段与段之间以及段的内部的都是离散的。

3. 快表和多级页表

在分页内存管理中,很重要的两点是:
  1. 虚拟地址到物理地址的转换要快。
  2. 解决虚拟地址空间大,页表也会很大的问题。
快表: 为了解决虚拟地址到物理地址的转换速度,操作系统在 页表方案 基础之上引入了快表来加速虚拟地址到物理地址的转换。可以把快表理解为一种特殊的高速缓冲存储器 Cache,其中的内容是页表的一部分或者全部内容。作为页表的 Cache,它的作用与页表相似,但是提高了访问速率。由于采用页表做地址转换,读写内存数据时 CPU 要访问两次主存。有了快表,有时只要访问一次高速缓冲存储器,一次主存,这样可加速查找并提高指令执行速度。
使用快表之后的地址转换流程是这样的:
  1. 根据虚拟地址中的页号查快表;
  2. 如果该页在快表中,直接从快表中读取相应的物理地址;
  3. 如果该页不在快表中,就访问内存中的页表,再从页表中得到物理地址,同时将页表中的该映射表项添加到快表中;
  4. 当快表填满后,又要登记新页时,就按照一定的淘汰策略淘汰掉快表中的一个页。
看完了之后你会发现快表和我们平时经常在我们开发的系统使用的缓存(比如 Redis)很像,的确是这样的,操作系统中的很多思想、很多经典的算法,你都可以在我们日常开发使用的各种工具或者框架中找到它们的影子。
多级页表引入多级页表的主要目的是为了避免把全部页表一直放在内存中占用过多空间,特别是那些根本就不需要的页表就不需要保留在内存中,多级页表属于时间换空间的典型场景;

为了提高内存的空间性能,提出了多级页表的概念;但是提到空间性能是以浪费时间性能为基础的,因此为了补充损失的时间性能,提出了快表(即 TLB)的概念。 不论是快表还是多级页表实际上都利用到了程序的局部性原理,局部性原理在后面的虚拟内存这部分会介绍到。

4. 分页机制和分段机制的共同点和区别

共同点
  • 分页机制和分段机制都是为了提高内存利用率,减少内存碎片。
  • 页和段都是离散存储的,所以两者都是离散分配内存的方式。但是,每个页和段中的内存是连续的。
区别
  • 页的大小是固定的,由操作系统决定;而段的大小不固定,取决于我们当前运行的程序。
  • 分页仅仅是为了满足操作系统内存管理的需求,而段是逻辑信息的单位,在程序中可以体现为代码段,数据段,能够更好满足用户的需要。

二、虚拟内存(Virtual Memory)

  • 虚拟内存是计算机系统内存管理的一种技术,我们可以手动设置自己电脑的虚拟内存。不要单纯认为虚拟内存只是“使用硬盘空间来扩展内存“的技术。虚拟内存的重要意义是它定义了一个连续的虚拟地址空间,并且 把内存扩展到硬盘空间
操作系统会提供⼀种机制,将不同进程的虚拟地址和不同内存的物理地址映射起来。
如果程序要访问虚拟地址的时候,由操作系统转换成不同的物理地址,这样不同的进程运⾏的时候,写⼊的是不同的物理地址,这样就不会冲突了。于是,这⾥就引出了两种地址的概念:
  1. 我们程序所使⽤的内存地址叫做虚拟内存地址Virtual Memory Address
  2. 实际存在硬件⾥⾯的空间地址叫物理内存地址Physical Memory Address

操作系统引⼊了虚拟内存,进程持有的虚拟地址会通过 CPU 芯⽚中的内存管理单元(MMU)的映射关系,来转换变成物理地址,然后再通过物理地址访问内存,操作系统是如何管理虚拟地址与物理地址之间的关系?主要是内存分段和内存分⻚

1.局部性原理

  • 时间局部性: 如果程序中某条指令一旦执行,不久后该指令可能再次执行;如果某数据被访问过,不久后该数据可能再次被访问。【原因:因为在程序中存在着大量的循环操作】
  • 空间局部性: 一旦程序访问了某个存储单元,在不久之后,其附近的存储单元也将被访问。【原因:因为指令通常是顺序存放、顺序执行的;数据也一般是以向量、数组、表等形式簇聚存储的】

2.为什么需要虚拟内存

  1. 问题1:进程地址空间不隔离。由于程序都是直接访问物理内存,所以恶意程序可以随意修改别的进程的内存数据,以达到破坏的目的。有些非恶意的,但是有bug的程序也可能不小心修改了其它程序的内存数据,就会导致其它程序的运行出现异常。这种情况对用户来说是无法容忍的,因为用户希望使用计算机的时候,其中一个任务失败了,至少不能影响其它的任务。
  2. 问题2:内存使用效率低。在A和B都运行的情况下,如果用户又运行了程序C,而程序C需要20M大小的内存才能运行,而此时系统只剩下8M的空间可供使用,所以此时系统必须在已运行的程序中选择一个将该程序的数据暂时拷贝到硬盘上,释放出部分空间来供程序C使用,然后再将程序C的数据全部装入内存中运行。可以想象得到,在这个过程中,有大量的数据在装入装出,导致效率十分低下。
  3. 问题3:程序运行的地址不确定。当内存中的剩余空间可以满足程序C的要求后,操作系统会在剩余空间中随机分配一段连续的20M大小的空间给程序C使用,因为是随机分配的,所以程序运行的地址是不确定的

现代处理器使用的是一种称为 虚拟寻址(Virtual Addressing) 的寻址方式。使用虚拟寻址,CPU 需要将虚拟地址翻译成物理地址,这样才能访问到真实的物理内存。 实际上完成虚拟地址转换为物理地址转换的硬件是 CPU 中含有一个被称为 内存管理单元(Memory Management Unit, MMU) 的硬件。


先从没有虚拟地址空间的时候说起吧!没有虚拟地址空间的时候,程序都是直接访问和操作的都是物理内存 。但是这样有什么问题呢?
  1. 用户程序可以访问任意内存,寻址内存的每个字节,这样就很容易(有意或者无意)破坏操作系统,造成操作系统崩溃。
  2. 想要同时运行多个程序特别困难,比如你想同时运行一个微信和一个 QQ 音乐都不行。为什么呢?举个简单的例子:微信在运行的时候给内存地址 1xxx 赋值后,QQ 音乐也同样给内存地址 1xxx 赋值,那么 QQ 音乐对内存的赋值就会覆盖微信之前所赋的值,这就造成了微信这个程序就会崩溃。
总结来说:如果直接把物理地址暴露出来的话会带来严重问题,比如可能对操作系统造成伤害以及给同时运行多个程序造成困难。
通过虚拟地址访问内存有以下优势:
  • 程序可以使用一系列相邻的虚拟地址来访问物理内存中不相邻的大内存缓冲区。
  • 程序可以使用一系列虚拟地址来访问大于可用物理内存的内存缓冲区。当物理内存的供应量变小时,内存管理器会将物理内存页(通常大小为 4 KB)保存到磁盘文件。数据或代码页会根据需要在物理内存与磁盘之间移动。
  • 不同进程使用的虚拟地址彼此隔离。一个进程中的代码无法更改正在由另一进程或操作系统使用的物理内存。

3.虚拟存储器

基于局部性原理,在程序装入时,可以将程序的一部分装入内存,而将其他部分留在外存,就可以启动程序执行。由于外存往往比内存大很多,所以我们运行的软件的内存大小实际上是可以比计算机系统实际的内存大小大的。在程序执行过程中,当所访问的信息不在内存时,由操作系统将所需要的部分调入内存,然后继续执行程序。另一方面,操作系统将内存中暂时不使用的内容换到外存上,从而腾出空间存放将要调入内存的信息。这样,计算机好像为用户提供了一个比实际内存大的多的存储器——虚拟存储器。
实际上,我觉得虚拟内存同样是一种时间换空间的策略,你用 CPU 的计算时间,页的调入调出花费的时间,换来了一个虚拟的更大的空间来支持程序的运行。不得不感叹,程序世界几乎不是时间换空间就是空间换时间。

4.虚拟内存技术的实现

虚拟内存的实现需要建立在离散分配的内存管理方式的基础上
  1. 请求分页存储管理 :建立在分页管理之上,为了支持虚拟存储器功能而增加了请求调页功能和页面置换功能。请求分页是目前最常用的一种实现虚拟存储器的方法。请求分页存储管理系统中,在作业开始运行之前,仅装入当前要执行的部分段即可运行。假如在作业运行的过程中发现要访问的页面不在内存,则由处理器通知操作系统按照对应的页面置换算法将相应的页面调入到主存,同时操作系统也可以将暂时不用的页面置换到外存中。
  2. 请求分段存储管理 :建立在分段存储管理之上,增加了请求调段功能、分段置换功能。请求分段储存管理方式就如同请求分页储存管理方式一样,在作业开始运行之前,仅装入当前要执行的部分段即可运行;在执行过程中,可使用请求调入中断动态装入要访问但又不在内存的程序段;当内存空间已满,而又需要装入新的段时,根据置换功能适当调出某个段,以便腾出空间而装入新的段。
  3. 请求段页式存储管理:请求段页式存储管理是建立在段页式存储管理基础上的一种段页式虚拟存储管理。根据段页式存储管理的思想,请求段页式存储管理首先按照程序自身的逻辑结构,将其划分为若干个不同的分段,在每个段内则按页的大小划分为不同的页,内存空间则按照页的大小划分为若干个物理块。内存以物理块为单位进行离散分配,不必将进程所有的页装入内存就可启动运行。当进程运行过程中,访问到不在内存的页时,若该页所在的段在内存,则只产生缺页中断,将所缺的页调入内存;若该页所在的段不在内存,则先产生缺段中断再产生缺页中断,将所缺的页调入内存。若进程需要访问的页已在内存,则对页的管理与段页式存储管理相同。
分页与分页存储管理,两者有何不同呢?
请求分页存储管理建立在分页管理之上,他们的根本区别是是否将程序全部所需的全部地址空间都装入主存,这也是请求分页存储管理可以提供虚拟内存的原因;即根本区别在于是否将一作业的全部地址空间同时装入主存。请求分页存储管理不要求将作业全部地址空间同时装入主存。基于这一点,请求分页存储管理可以提供虚存,而分页存储管理却不能提供虚存。

不管是上面那种实现方式,我们一般都需要:
  1. 一定容量的内存和外存:在载入程序的时候,只需要将程序的一部分装入内存,而将其他部分留在外存,然后程序就可以执行了;
  2. 缺页中断:如果需执行的指令或访问的数据尚未在内存(称为缺页或缺段),则由处理器通知操作系统将相应的页面或段调入到内存,然后继续执行程序;
  3. 虚拟地址空间 :逻辑地址到物理地址的变换。

三、页面置换算法

虚拟内存管理很重要的一个概念就是页面置换算法:
  • 最佳置换算法 OPT
  • 先进先出置换算法
  • 最近最久为使用置换算法 LRU
  • 时钟置换算法 Clock
  • 最近最少使用置换算法
地址映射过程中,若在页面中发现所要访问的页面不在内存中,则发生缺页中断 :
缺页中断 就是要访问的页不在主存,需要操作系统将其调入主存后再进行访问。 在这个时候,被内存映射的文件实际上成了一个分页交换文件。
当发生缺页中断时,如果当前内存中并没有空闲的页面,操作系统就必须在内存选择一个页面将其移出内存,以便为即将调入的页面让出空间。用来选择淘汰哪一页的规则叫做页面置换算法,我们可以把页面置换算法看成是淘汰页面的规则。

1. 最佳置换算法 OPT

OPT, Optimal replacement algorithm
  • 选择那些永不使用的,或者是在最长时间内不再被访问的页面置换出去。
  • 是一种理论上的算法,性能最好,因为无法知道一个页面多长时间不再被访问。
从内存中选择今后不再访问的页面或者在最长一段时间后才需要访问的页面进行淘汰。如下例子:
根据页面走向依次处理,得到最终的置换结果如下图表,整个页面缺页次数为7,缺页率为7/12=58%。

最佳(Optimal,OPT)置换算法所选择的被淘汰页面将是以后永不适用的,或者是在最长时间内不再被访问的页面,这样可以保证获得最低的缺页率。但是由于人们目前无法预知进程在内存下的若干页面中哪个是未来最长时间不再被访问的,因而该算法无法实现。

2. 最近最久未使用 LRU

LRU, Least Recently Used
  • 虽然无法知道将来要使用的页面情况,但是可以知道过去使用页面的情况。
  • LRU 将最近最久未使用的页面换出。
  • 为了实现 LRU,需要在内存中维护一个所有页面的链表。当一个页面被访问时,将这个页面移到链表表头。这样就能保证链表表尾的页面是最近最久未访问的。
  • 这种方式实现的 LRU 代价很高:因为每次访问都需要更新链表


3.先进先出 FIFO

FIFO, First In First Out
选择换出的页面是最先进入的页面。
该算***将那些经常被访问的页面换出,导致缺页率升高。

4.时钟置换算法 Clock

也叫最近未用算法 NRU(Not RecentlyUsed)。该算法为每个页面设置一位访问位,将内存中的所有页面都通过链接指针链成一个循环队列。当某页被访问时,其访问位置“1”。在选择一页淘汰时,就检查其访问位,如果是“0”,就选择该页换出;若为“1”,则重新置为“0”,暂不换出该页,在循环队列中检查下一个页面,直到访问位为“0”的页面为止。由于该算法只有一位访问位,只能用它表示该页是否已经使用过,而置换时是将未使用过的页面换出去,所以把该算法称为最近未用算法。

5.最少使用置换算法LFU:

该算法选择最近时期使用次数最少的页面作为淘汰页
这种算法选择近期最少访问的页面作为被替换的页面。显然,这是一种合理的算法,因为到目前为止最少使用的页面,很可能也是将来最少访问的页面。
如果一个数据在最近一段时间很少被访问到,那么可以认为在将来它被访问的可能性也很小。因此,当空间满时,最小频率访问的数据最先被淘汰。
但是呢,有的数据的访问次数可能是相同的。怎么处理呢?
如果访问次数相同,那么再考虑数据在缓存里面待的时间长短这个维度。
也就是说 LFU 算法,先看访问次数,如果次数一致,再看缓存时间。
set(key,value):将记录(key,value)插入该结构。 当缓存满时,将访问频率最低的数据置换掉。 get(key):返回key对应的value值。
一般会维护两个数据结构:
  • 哈希:用来提供对外部的访问,查询效率更高;
  • 双向链表或队列:维护了对元素访问次数的排序
缓存操作导致的链表变化:
  1. 添加新元素:新元素访问次数为1,放到队尾;
  2. 缓存淘汰:从队尾开始淘汰,因为队尾元素的访问次数最少;
  3. 访问缓存:访问缓存会增加元素的访问次数,所以元素在队列或双向链表中的位置会重新排序

四、MMU

MMU(Memory Management Unit),即内存管理单元,是现代CPU架构中不可或缺的一部分,MMU主要包含以下几个功能:
  • 虚实地址翻译
在用户访问内存时,将用户访问的虚拟地址翻译为实际的物理地址,以便CPU对实际的物理地址进行访问。
  • 访问权限控制
可以对一些虚拟地址进行访问权限控制,以便于对用户程序的访问权限和范围进行管理,如代码段一般设置为只读,如果有用户程序对代码段进行写操作,系统会触发异常。
  • 引申的物理内存管理
对系统的物理内存资源进行管理,为用户程序提供物理内存的申请、释放等操作接口。

使用MMU带来的好处或者优势:
  • 提升物理内存的利用率
物理内存按需申请,如代码段的内存在执行时进行映射和转换,进程fork后,t通过写时复制(Copy-On-Write)进行真正的物理内存分配。解决内存管理碎片化的问题,即在系统运行一段时间后,频繁的内存申请和释放会导致内存碎片化,无法申请到一块足够大的地址连续的内存。
  • 对内存地址的访问进行控制
如上述代码段只读权限控制,多线程的栈内存之间的空洞页隔离可以防止栈溢出后改写其他线程的栈内存,不同进程之间的地址隔离等等。
  • 将进程的地址空间隔离
不同进程之间可以使用相同的虚拟内存地址空间,而进程间的物理内存又可以做到隔离,这保证了进程的独立性同时,又简化了地址的访问方式,如在早期32位CPU上,为了支持4G以上的物理内存,一般物理地址有36-bit(如PowerPC-604系列),但是用户的虚地址仍然使用32-bit,做法就是将用户的不同进程的32-bit虚地址在MMU转换时,转换为36-bit的物理地址,这样每个进程仍然能访问0-3G虚地址范围,将多个进程的3G空间映射到36-bit的物理内存空间中去。

#面试高频考点汇总#
全部评论
总结的挺好。赞
点赞 回复
分享
发布于 2022-09-08 12:18 北京

相关推荐

6 34 评论
分享
牛客网
牛客企业服务