2021秋招算法岗部分面经总结

未经同意,禁止转载

美团到店一面凉经

  • bagging,boosting对比,举例
  • auc,precision,recall,acc含义
  • 过拟合怎么办
  • 深度学习优势
  • 深挖项目
  • 正则表达式
  • 推荐模型通常由哪几部分组成,item的id如何embedding,word2vec做法,从word2vec出发,该怎么做id的embedding
  • 常用推荐算法模型有哪些
  • 算法题,问的有问题,这边就不提了

字节跳动音乐一面,二面(暂时到二面)

  • 一面
  • 实习项目和论文,论文中的方法相对于传统方法有什么优势
  • lgb相对于xgboost的优势
  • 由于本人读研期间是做不平衡方向的,所以问了常用的处理不平衡数据的方法
  • 算法题,二叉树搜索中,两个节点互换了位置,找到这两个节点;用rand3实现rand7(这题可以参考leetcode中的rand7实现rand10,之前做过,但是面试的时候忘了。。是在没想起来。)还好面试官人好给了我二面。
  • 二面
  • 上来先是算法题,整数数组无序,是否存在下标i<j<k,并且值ai<aj<ak。写了dp的思路,问了时间空间复杂度,接着让我改进,讲了一个归并排序的思路,不过面试官希望我用o(n)的方式实现,没想出来,最后给了我提示双指针,这题貌似leetcode上也有类似的题目
  • 问项目和论文

b站一面,二面(暂时二面)

  • 一面
  • 实习项目,问的比较细,会和你探讨
  • 训练推荐模型的时候,有时候会负采样,分布发生变化后,如何校准
  • 用于分类的损失函数有哪些,写一下具体公式
  • hingeloss的含义,写一下公式
  • 对推荐算法了解哪些
  • 算法题,0,1组成的矩阵,从左上走到右下,不同的走法数,1是障碍
  • 二面
  • 实习项目,深挖
  • xgboost的参数有哪些,过拟合后如何调参
  • 常用的正则项有哪些
  • l1,l2正则项适用场景,特征稀疏的时候用哪个比较好
  • auc高是否一定说明auc高的模型排序能力更强,不一定,需要考虑测试数据的正负样本分布
  • 树模型介绍,树模型和逻辑回归的区别,哪个模型能考虑特征交叉(树),哪个非线性性更好,逻辑回归如何做特征交叉
  • 不平衡数据的处理方式
  • 算法题,二叉树的层次遍历,平方根
  • 反问

百度提前批一面,二面(大概率凉了)

  • 一面,三道算法题,具体记不清了,主要是考研二分搜索,递归,dp
  • 二面,算法题还是二分搜索,1到n的数字,组成二叉搜索树的个数,用递归解了,不过可以用dp优化,但是当时没想出来。。
  • 考了一个开放题,文本纠错。。没接触过,就自己瞎编。

总结

首先对于写到简历上的内容一定是自己熟悉的,并且对于简历上涉及的知识点需要熟悉,并且可能的扩展需要自己先预想一下,然后准备一下。其次,最好有一个实习,一般面试官都是对实习感兴趣,我这几个面试,他们问的基本都是实习的项目,论文也会问。然后,基础知识得多背背,当然大佬直接理解了是最好的,我主要是看《百面机器学习》和《百面机器学习》以及“西瓜书”,再加上一些面经,就差不多了。最后,就是刷题,刷题很重要,并且需要理解,做不出来没关系,但是看题解的时候需要去理解他,并且隔一段时间再去做一做,就相当于错题集一样,如果有刚开始刷题的小伙伴,可以碰到一些觉得很好的题,有启发的题,或者易错的题就把他收藏了,这样到时候方面复习总结,我就是在做的时候会把一些题收藏,然后到后面就是主要去复习这些题,当然也可以去codetop.cc这个网站。后面我也会简单整理一下自己觉得不错的题,然后和大家分享。

简历,自我介绍也要提前准备好,然后多熟悉熟悉,读一读,背一背。

早做准备,早拿offer,早躺平休息。祝愿大家都能得偿所愿,收获offer。

后续有新的面经也会及时进行补充,不要吝啬你的三连哈!!

#面试##面经##校招##字节跳动##哔哩哔哩##百度##美团#
全部评论
大家别只收藏呀,点个赞再走呗😂
1 回复 分享
发布于 2021-08-27 11:15
楼主b站有回复了吗,我上周四二面完现在还没消息,是不是已经凉了😥😥
点赞 回复 分享
发布于 2021-09-01 23:43
问下楼主b站什么时候面试的呀
点赞 回复 分享
发布于 2021-08-30 21:26
树模型和hinge loss是简历里提到了么
点赞 回复 分享
发布于 2021-08-28 22:19

相关推荐

10-28 10:48
已编辑
门头沟学院 Java
孩子我想要offer:发笔试后还没笔试把我挂了,然后邮箱一直让我测评没测,后面不知道干嘛又给我捞起来下轮笔试,做完测评笔试又挂了😅
点赞 评论 收藏
分享
10-19 10:28
已编辑
西南石油大学 后端工程师
团孝子已上线feeling:面了很多家公司,能感受到目前只有小公司+外包喜欢问八股。大厂虽然也问八股,但是是从实习、项目中进行提问,并且大厂会问很深,面试官也会对你的回答进行思考➕追问,所以准备大厂面试前一定要备好相关资料。对于算法,我做的是codetop前100+力扣hot100+力扣高频150,面试中实感hot100就足够,基本上只要是hot100就秒答。对于项目和八股,我做的也是烂大街的星球项目,八股则是看小林和问ai,自己也写了很多技术博客和画了很多思维导图,并且自己也尝试用嘴巴说出来,不只停留于纸面。运气也很重要,必须要让面试官/HR看到简历才行,所以建议投递时间是下午两点。tl:第一岗位9.9&nbsp;投递9.10&nbsp;一面(一面评价:最近见过最强的大三,结束五分钟后约二面,都晚上九点了不下班吗)9.11&nbsp;二面(三道算法a出两道,反问评价:经验不够等横向,我实习生要啥经验)9.21挂(实习时间过短+其他原因,想要一年实习的,为什么不招个正职)第二岗位10.10投递10.11约面(主管打电话,说看到我之前投递记录了想要我挂qa职进去干后端,同意)10.14&nbsp;一面(无八股,主动说确实很强,意愿很强)10.16&nbsp;oc其余,友邦,东软,东华,惠择,用友oc已拒京东测开一面挂(投后端被测开捞)腾讯测试已拒(投后端被测开捞)ps:表扬惠择的主管面,没怎么问技术(可能是一面面试官沟通过了),全程一起讲大道理,解答了心中很多疑惑,也告诉我以面试官角度来看怎么选候选人,如果可以下次一定选惠择
HeaoDng:美团好像可以触发一面通
点赞 评论 收藏
分享
评论
28
54
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务