【LeetCode每日一题】2039. 网络空闲的时刻【中等】BFS

给你一个有 n 个服务器的计算机网络,服务器编号为 0 到 n - 1 。同时给你一个二维整数数组 edges ,其中 edges[i] = [ui, vi] 表示服务器 ui 和 vi 之间有一条信息线路,在 一秒 内它们之间可以传输 任意 数目的信息。再给你一个长度为 n 且下标从 0 开始的整数数组 patience 。

题目保证所有服务器都是 相通 的,也就是说一个信息从任意服务器出发,都可以通过这些信息线路直接或间接地到达任何其他服务器。

编号为 0 的服务器是 主 服务器,其他服务器为 数据 服务器。每个数据服务器都要向主服务器发送信息,并等待回复。信息在服务器之间按 最优 线路传输,也就是说每个信息都会以 最少时间 到达主服务器。主服务器会处理 所有 新到达的信息并 立即 按照每条信息来时的路线 反方向 发送回复信息。

在 0 秒的开始,所有数据服务器都会发送各自需要处理的信息。从第 1 秒开始,每 一秒最 开始 时,每个数据服务器都会检查它是否收到了主服务器的回复信息(包括新发出信息的回复信息):

如果还没收到任何回复信息,那么该服务器会周期性 重发 信息。数据服务器 i 每 patience[i] 秒都会重发一条信息,也就是说,数据服务器 i 在上一次发送信息给主服务器后的 patience[i] 秒 后 会重发一条信息给主服务器。
否则,该数据服务器 不会重发 信息。
当没有任何信息在线路上传输或者到达某服务器时,该计算机网络变为 空闲 状态。

请返回计算机网络变为 空闲 状态的 最早秒数 。

 

示例 1:



输入:edges = [[0,1],[1,2]], patience = [0,2,1]
输出:8
解释:
0 秒最开始时,
- 数据服务器 1 给主服务器发出信息(用 1A 表示)。
- 数据服务器 2 给主服务器发出信息(用 2A 表示)。

1 秒时,
- 信息 1A 到达主服务器,主服务器立刻处理信息 1A 并发出 1A 的回复信息。
- 数据服务器 1 还没收到任何回复。距离上次发出信息过去了 1 秒(1 < patience[1] = 2),所以不会重发信息。
- 数据服务器 2 还没收到任何回复。距离上次发出信息过去了 1 秒(1 == patience[2] = 1),所以它重发一条信息(用 2B 表示)。

2 秒时,
- 回复信息 1A 到达服务器 1 ,服务器 1 不会再重发信息。
- 信息 2A 到达主服务器,主服务器立刻处理信息 2A 并发出 2A 的回复信息。
- 服务器 2 重发一条信息(用 2C 表示)。
...
4 秒时,
- 回复信息 2A 到达服务器 2 ,服务器 2 不会再重发信息。
...
7 秒时,回复信息 2D 到达服务器 2 。

从第 8 秒开始,不再有任何信息在服务器之间传输,也不再有信息到达服务器。
所以第 8 秒是网络变空闲的最早时刻。
示例 2:



输入:edges = [[0,1],[0,2],[1,2]], patience = [0,10,10]
输出:3
解释:数据服务器 1 和 2 第 2 秒初收到回复信息。
从第 3 秒开始,网络变空闲。
 

提示:

n == patience.length
2 <= n <= 105
patience[0] == 0
对于 1 <= i < n ,满足 1 <= patience[i] <= 105
1 <= edges.length <= min(105, n * (n - 1) / 2)
edges[i].length == 2
0 <= ui, vi < n
ui != vi
不会有重边。
每个服务器都直接或间接与别的服务器相连。

题解:
    可以使用宽搜把所有节点到0号节点的距离算出来,当节点的两倍距离不超过等待时间时,空闲时间为2倍距离+1;
如果超过了等待时间,那么此时需要计算出需要重发多少次消息,则空闲时间为
class Solution {
public:
    int networkBecomesIdle(vector<vector<int>>& edges, vector<int>& patience) {
        int n = patience.size();
        vector<vector<int>> m(n);
        for(auto e: edges){
            m[e[0]].push_back(e[1]);
            m[e[1]].push_back(e[0]);
        }
        vector<int> d(n);
        vector<bool> vis(n);
        queue<int> q;
        int distance = 1;
        int ans = 0;
        q.push(0);
        vis[0] = true;
        while(!q.empty()){
            int size = q.size();
            for(int i = 0; i < size; i++){
                int now = q.front();
                q.pop();
                for(auto to: m[now]){
                    if(!vis[to]){
                        vis[to] = true;
                        q.push(to);
                        d[to] = distance;
                        if(2 * d[to] <= patience[to]) d[to] = 2 * d[to];
                        else d[to] = (2 * d[to] - 1) / patience[to] * patience[to] + 2 * d[to]; 
                        ans = max(ans, d[to]);
                    }
                }
            }
            distance++;
        }      
        return ans + 1;
    }
};
时间复杂度,空间复杂度均为O(n+m) , n为节点数目,m为edge数组的大小


全部评论

相关推荐

1 收藏 评论
分享
牛客网
牛客企业服务