输出包括两行,第一行一个整数n,代表数组arr长度,第二行包含n个整数,第i个代表arr[i]
。
输出一个整数,代表最后获胜者的分数。
4 1 2 100 4
101
时间复杂度,空间复杂度
import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.IOException; public class Main { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(br.readLine()); String[] strCards = br.readLine().split(" "); int[] cards = new int[n]; for(int i = 0; i < n; i++) cards[i] = Integer.parseInt(strCards[i]); System.out.println(first(cards, 0, cards.length - 1)); // 假设A玩家先,并让他获胜 } // 先手函数 private static int first(int[] cards, int left, int right) { if(left == right) return cards[left]; // 剩最后一张牌,拿走 // 先手利益最大化 return Math.max(cards[left] + second(cards, left + 1, right), cards[right] + second(cards, left, right - 1)); } // 后手函数 private static int second(int[] cards, int left, int right) { if(left == right) return 0; // 剩最后一张牌,被先手的拿了 return Math.min(first(cards, left + 1, right), first(cards, left, right - 1)); // 先手留最少的给后手 } }然后根据递归的依赖关系改出动规版本:(1)有两个递归函数,就有两张动态规划表;(2)对于区间[left,right]上面的结果,dp[left][right]依赖left+1和right-1,因此left从大往小遍历,right从小往大遍历;(3)left不能大于right,因此动态规划表中left>right的区域无效。
import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.IOException; public class Main { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(br.readLine()); String[] strCards = br.readLine().split(" "); int[] cards = new int[n]; for(int i = 0; i < n; i++) cards[i] = Integer.parseInt(strCards[i]); // 先手和后手一起动规 int[][] dpFirst = new int[n][n]; int[][] dpSecond = new int[n][n]; for(int right = 0; right < n; right ++){ for(int left = right; left >= 0; left --){ if(left == right){ // 只剩一张牌,先手的拿 dpFirst[left][right] = cards[left]; dpSecond[left][right] = 0; }else if(left < right){ dpFirst[left][right] = Math.max(cards[left] + dpSecond[left + 1][right], cards[right] + dpSecond[left][right - 1]); dpSecond[left][right] = Math.min(dpFirst[left + 1][right], dpFirst[left][right - 1]); } } } System.out.println(Math.max(dpFirst[0][n - 1], dpSecond[0][n - 1])); } }
//一般的递归法和动态规划方法,左神的书已经讲的比较清楚 //这里主要说一说另一种思路 //设胜者的总分为x,败者的总分为y,且有 x - y = diff; //方程一 //又因为两者的分数和为纸牌的总分,则有 x + y = sum; //方程二 //联立方程式可得 x = (sum + diff)/2; //因此题目就转化为求两者的总分差diff //令递推公式f(i,j):在剩余的i~j牌中,A(先拿)的分数减去B(后拿)的分数 //因此 f(i,j)=max(arr[i]-f(i+1,j),arr[j]-f(i,j-1)); //上式中的f(i+1,j)为剩余牌中B的分数减去A的分数,加负号并加上arr[i], //代表A取最左边牌的情况,arr[j]-f(i,j-1)的含义为取最右的情况 //根据递推公式直接递归的方法 //diff = first - second int getDiffCore(const int *arr, int i, int j); int winner_Solution3_Recursive(const int arr[], const int len) { if (arr == NULL || len < 1) return 0; int sum = 0; for (int i = 0; i < len; ++i) sum += arr[i]; int diff = getDiffCore(arr, 0, len - 1); if (diff < 0) diff = -diff; return (sum + diff) / 2; } int getDiffCore(const int *arr, int i, int j) { if (i == j) return arr[i]; return std::max(arr[i] - getDiffCore(arr, i + 1, j), arr[j] - getDiffCore(arr, i, j - 1)); } //=================================== //一般的动态规划 int winner_Solution3(const int arr[], const int len) { if (arr == NULL || len < 1) return 0; int sum = 0; for (int i = 0; i < len; ++i) sum += arr[i]; int **f = make2DArray<int>(len, len); for (int j = 0; j < len; ++j) { f[j][j] = arr[j]; for (int i = j - 1; i >= 0; --i) { f[i][j] = std::max(arr[i] - f[i + 1][j], arr[j] - f[i][j - 1]); } } int diff = f[0][len - 1]; if (diff < 0) diff = -diff; return (sum + diff) / 2; } //================================ //空间压缩后,空间复杂度为O(N) int winner_Solution3(const int arr[], const int len) { if (arr == NULL || len < 1) return 0; int sum = 0; for (int i = 0; i < len; ++i) sum += arr[i]; int *dp = new int[len]; for (int i = len - 1; i >= 0; --i) { dp[i] = arr[i]; for (int j = i + 1; j < len; ++j) { dp[j] = std::max(arr[i] - dp[j], arr[j] - dp[j - 1]); } } int diff = dp[len - 1]; if (diff < 0) diff = -diff; return (sum + diff) / 2; }
#include <bits/stdc++.h> using namespace std; int win(vector<int> arr, int n){ vector<int> f(n,0); vector<int> s(n,0); for(int j=0; j<n; j++){ f[j] = arr[j]; s[j] = 0; for(int i=j-1; i>=0; i--){ int k=j, a=f[i]; f[i] = max(arr[i]+s[i+1], arr[k--]+s[i]); //在纸上画下就知道 s[i] = min(f[i+1], a); } } return max(f[0], s[0]); } int main(){ int n; scanf("%d", &n); if(n == 0) return 0; vector<int> arr(n); for(int i=0; i<n; i++) scanf("%d", &arr[i]); cout << win(arr, n); return 0; }
#include <bits/stdc++.h> using namespace std; int main(){ int n, s=0; cin>>n; int a[n], dp[n]; for(int i=0;i<n;i++){ cin>>a[i]; dp[i] = a[i]; s += a[i]; } for(int j=1;j<n;j++) for(int i=0;i<n-j;i++) dp[i] = max(a[i]-dp[i+1], a[i+j]-dp[i]); cout<<(s+abs(dp[0]))/2<<endl; return 0; }
n = int(input()) arr = list(map(int,input().split(' '))) def win2(arr,n): if not arr&nbs***bsp;len(arr)==0: return 0 f = [[0] * n] * n s = [[0] * n] * n for j in range(n): f[j][j] == arr[j] for i in range(j-1,-1,-1): f[i][j] = max(arr[i]+s[i+1][j], arr[j] + s[i][j-1]) s[i][j] = min(f[i+1][j], f[i][j-1]) return max(f[0][n-1] , s[0][n-1]) ans = win2(arr,n) print(ans) # 这题python跑不通嘛? 是O(N^2)也通不过。
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = sc.nextInt(); } int[][] dpf = new int[n][n]; int[][] dps = new int[n][n]; for (int j = 0; j < n; j++) { for (int i = n - 1; i >= 0; i--) { if (i > j) { continue; } else if (i == j) { dpf[i][j] = arr[i]; dps[i][j] = 0; } else { dpf[i][j] = Math.max(arr[i] + dps[i + 1][j], arr[j] + dps[i][j - 1]); dps[i][j] = Math.min(dpf[i + 1][j], dpf[i][j - 1]); } } } int res = Math.max(dpf[0][n - 1], dps[0][n - 1]); System.out.println(res); } }
import java.util.Scanner; public class Main{ public static void main(String[] args){ Scanner sc=new Scanner(System.in); int n=sc.nextInt(); int[] arr=new int[n]; for(int i=0;i<n;i++){ arr[i]=sc.nextInt(); } System.out.print(win(n,arr)); } public static int win(int n,int[] arr){ if(arr==null||n==0){ return 0; } int[][] f=new int[n][n]; int[][] s=new int[n][n]; for(int j=0;j<n;j++){ f[j][j]=arr[j]; for(int i=j-1;i>=0;i--){ f[i][j]=Math.max(arr[i]+s[i+1][j],arr[j]+s[i][j-1]); s[i][j]=Math.min(f[i+1][j],f[i][j-1]); } } return Math.max(f[0][n-1],s[0][n-1]); } }
#include <iostream> using namespace std; #define N 5000 int arr[N]; int f[N][N]; int g[N][N]; int max2(int a,int b) { return (a>b? a:b); } int min2(int a,int b) { return (a<b? a:b); } int main() { int n; cin>>n; for(int i=0;i<n;++i) { cin>>arr[i]; } for(int i=0;i<n;++i) { f[i][i]=arr[i]; g[i][i]=0; } // dp process for(int len=1;len<n;++len) { for(int i=0;i+len<n;++i) { f[i][i+len]=max2(arr[i]+g[i+1][i+len],arr[i+len]+g[i][i+len-1]); g[i][i+len]=min2(f[i+1][i+len],f[i][i+len-1]); } } cout<<max2(f[0][n-1],g[0][n-1])<<endl; return 0; }
import java.util.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = sc.nextInt(); } int[][] f = new int[n][n]; int[][] s = new int[n][n]; for (int i = 0; i < n; i++) { f[i][i] = a[i]; s[i][i] = 0; } for (int d = 1; d < n; d++) { for (int i = 0; i < n - d; i++) { f[i][i + d] = Math.max(a[i] + s[i + 1][i + d], a[i + d] + s[i][i + d - 1]); s[i][i + d] = Math.min(f[i + 1][i + d], f[i][i + d -1]); } } System.out.println(Math.max(f[0][n-1], s[0][n-1])); } }